首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial 25S rRNA sequencing of Cerinosterus cyanescens showed it to be a close relative of Microstroma juglandis, a member of the basidiomycetous order Microstromatales. It is unrelated to the generic type species, C. luteoalba, which is a member of the order Dacrymycetales. The clinical occurrence of C. cyanescens is possibly explained by its thermotolerance and lipolytic activity. The species' nutritional profile is established. Growth on n-hexadecane is rapid; it grows well on typical plant constituents like gallic, tannic, vanillic, quinic and p-coumaric acids, but not on 3-hydroxybenzoic acid, phenol and hydroquinone. The failure to assimilate D-galactose, L-sorbose and ethylamine, the presence of urease and sensitivity to cycloheximide are diagnostic for the species.  相似文献   

2.
Catabolism of Substituted Benzoic Acids by Streptomyces Species   总被引:17,自引:13,他引:4       下载免费PDF全文
Four thermotolerant actinomycetes from soil, identified as Streptomyces albulus 321, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. V7, were grown at 45°C in media containing either benzoic acid or hydroxyl- and methoxyl-substituted benzoic acids as the principal carbon sources. Benzoic acid was converted to catechol; p-hydroxybenzoic, vanillic, and veratric acids were converted to protocatechuic acid; and m-hydroxybenzoic acid was converted to gentisic acid. Catechol, protocatechuic acid, and gentisic acid were cleaved by catechol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase, and gentisate 1,2-dioxygenase, respectively. Dioxygenases appeared only in induced cultures. m-Hydroxybenzoic, m-anisic, and p-anisic acids were gratuitous inducers of dioxygenases in some strains. One strain converted vanillic acid to guaiacol.  相似文献   

3.
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88?U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2′5′ ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.  相似文献   

4.
Anaerobic Biodegradation of Eleven Aromatic Compounds to Methane   总被引:28,自引:25,他引:3       下载免费PDF全文
A range of 11 simple aromatic lignin derivatives are biodegradable to methane and carbon dioxide under strict anaerobic conditions. A serum-bottle modification of the Hungate technique for growing anaerobes was used for methanogenic enrichments on vanillin, vanillic acid, ferulic acid, cinnamic acid, benzoic acid, catechol, protocatechuic acid, phenol, p-hydroxybenzoic acid, syringic acid, and syringaldehyde. Microbial populations acclimated to a particular aromatic substrate can be simultaneously acclimated to other selected aromatic substrates. Carbon balance measurements made on vanillic and ferulic acids indicate that the aromatic ring was cleaved and that the amount of methane produced from these substrates closely agrees with calculated stoichiometric values. These data suggest that more than half of the organic carbon of these aromatic compounds potentially can be converted to methane gas and that this type of methanogenic conversion of simple aromatics may not be uncommon.  相似文献   

5.
Summary An anaerobic enrichment culture that degraded 0.4 mmol/l per day of o-phenylphenol was selected from sediment of a waste water pond of a sugar factory. From the consortium an o-phenylphenol-degrading bacterium, strain B10, was isolated. Strain B10 could not degrade other aromatic substances, including phenylacetic acid, benzoate, o-hydroxybenzoate, p-hydroxybenzoate and phenol. Best growth was observed with glucose, pyruvate, lactate, methanol and H2/CO2 as substrates. o-Phenylphenol was slowly degraded if supplied as the only carbon source and was cometabolized in the presence of >5 mmol/l glucose. Strain B10 has not yet been assigned to a known species or family.  相似文献   

6.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

7.
A very small amount of vanillin was found in Saké, but the mechanism of its formation during Saké brewing has not yet been elucidated. Therefore, shaking culture of a Saké yeast (Kyokai No. 7 strain) was carried out in the Hayduck’s solution containing ferulic acid which was considered to be a precursor of vanillin. By the analysis of the fermentation products, formation of p-hydroxybenzoic acid and vanillic acid was elucidated. On the other hand, in the similar experiment using vanillin in place of ferulic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde and vanillic acid were identified.

On these results, it was suggested that vanillin might be formed as an intermediate of the degradation reaction of ferulic acid, and also, the demethoxylation of vanillin might be occurred in the fermentation of yeast.  相似文献   

8.
Summary A trans-ferulic acid-utilizing Pseudomonas sp. HF-1 was isolated from soil samples. Mutant HF-1124, capable of growing on trans-ferulic acid but not on protocatechuic acid, was isolated from HF-1 after mutagenesis with nitrosoguanidine. The optimum temperature was 30°C and the optimum pH was 7.0–8.0 for protocatechuic acid production from trans-ferulic acid by mutant HF-1124. Protocatechuic acid production reached 4 g/l from a concentration of 8 g/l trans-ferulic acid. As a result of co-oxidation of methoxy aromatic compounds by strain HF-1124 grown on acetic acid, protocatechuic acid was formed from vanillin and vanillic acid, and vanillic acid and isovanillic acid were formed from veratric acid. By the co-oxidative demethylation of substituted monomethoxybenzene, m- and p-hydroxybenzoic acids were accumulated from m-and p-anisic acid, respectively, while no products were detected from anisole, o-anisic acid, nitroanisole, methylanisole, methoxyphenol and dimethoxybenzene.  相似文献   

9.
Klebsiella aerogenes adapted to a chemically-defined mineral salts medium with glucose orp-hydroxybenzoate as sole source of carbon and energy possessed constitutive decarboxylases for gentisate (2,5-dihydroxybenzoate), protocatechuate (3,4-dihydroxybenzoate) and gallate (3,4,5-trihydroxybenzoate) whose pH optima were respectively 5.9, 5.6 and 5.8. A decarboxylase for PHB was induced by PHB in both growing and resting cells; the induction was delayed or inhibited by chloramphenicol and by ultrasonic disruption of the bacteria. Crude ultrasonic preparations of PHB decarboxylase had an optimum pH of 6.0, a Michaelis constant of 4mm and an activation energy of 25,500 cal mole–1 at 28 – 38 C. All four decarboxylations proceeded without O2 and for every mole of phenolic acid decomposed one mole of CO2 and one mole of the corresponding phenol were produced. The effects of ultrasonic disruption of the bacteria suggested that permeability barriers limited the rate of decarboxylation of PHB and 2,5-DHB but not of 3,4-DHB or 3,4,5-THB. During ultrasonic disintegration PHB and 3,4-DHB decarboxylases were retained solely by insoluble centrifugeable particles, whereas 2,5-DHB and 3,4,5-THB decarboxylases were gradually released into solution.The decarboxylation of protocatechuic acid is an essential stage in the assimilation ofp-hydroxybenzoic acid byK. aerogenes, whereas the decarboxylation ofp-hydroxybenzoate itself is an injurious side reaction.We wish to thank Mr. P. J. Wragg for technical assistance.  相似文献   

10.
Metabolism of veratric acid and other aromatic compounds has been studied in two strains of Pycnoporus cinnabarinus. In non-agitated cultures which contained cellulose as an additional carbon source, veratric acid was demeth(ox)ylated to vanillic acid which accumulated in the medium. Under these conditions, 14CO2 evolution from [4-O14CH3]-veratric acid preceded that from [3-O14CH3]-veratric acid in the case of both strains. 14CO2 evolution was markedly accelerated and increased when 100% oxygen was employed instead of air. Oxygen had not so strong effect on the decarboxylation of 14COOH-labelled vanillic and p-hydroxybenzoic acid but it did increase decarboxylation of 14COOH-labelled veratric acid, indicating the effect of oxygen on the preceding demeth(ox)ylation. There were indications, for example rapid demethylation of veratric acid in early stages of growth when apparent phenol oxidase (laccase) activity was zero, for an existence of a separate demethylase enzyme. However, the participation of phenol oxidases in demeth(ox)ylation cannot be ruled out. Degradation pattern of vanillic acid was basically similar in P. cinnabarinus compared to Sporotrichum pulverulentum (Phanerochaete chrysosporium). Also the effect of carbon source was similar: cellulose as a carbon source enhanced degradation of vanillic acid through methoxyhydroquinone whereas in glucose medium, vanillic acid was reduced to the respective aldehyde and alcohol.Non-standard abbreviations CBQ cellobiose: quinone oxidoreductase - MHQ methoxyhydroquinone  相似文献   

11.
Enterobacter cloacae strain EM was isolated from a commercial dietary mineral supplement stabilized by a mixture of methylparaben and propylparaben. It harbored a high-molecular-weight plasmid and was resistant to high concentrations of parabens. Strain EM was able to grow in liquid media containing similar amounts of parabens as found in the mineral supplement (1,700 and 180 mg of methyl and propylparaben, respectively, per liter or 11.2 and 1.0 mM) and in very high concentrations of methylparaben (3,000 mg liter−1, or 19.7 mM). This strain was able to hydrolyze approximately 500 mg of methyl-, ethyl-, or propylparaben liter−1 (3 mM) in less than 2 h in liquid culture, and the supernatant of a sonicated culture, after a 30-fold dilution, was able to hydrolyze 1,000 mg of methylparaben liter−1 (6.6 mM) in 15 min. The first step of paraben degradation was the hydrolysis of the ester bond to produce 4-hydroxybenzoic acid, followed by a decarboxylation step to produce phenol under aerobic conditions. The transformation of 4-hydroxybenzoic acid into phenol was stoichiometric. The conversion of approximately 500 mg of parabens liter−1 (3 mM) to phenol in liquid culture was completed within 5 h without significant hindrance to the growth of strain EM, while higher concentrations of parabens partially inhibited its growth.  相似文献   

12.
Ethanol (1:1) extract of defatted soybean flour was fractionated systematically and the resulting phonolic acid fraction was investigated. This fraction had strong phenol-like flavor and contained at least seven phenolic acids including syringic, vanillic, ferulic, gentisic, salicylic, p-coumaric, and p-hydroxybenzoic acids. The main component among these was syringic acid, which was isolated as 3,5-dinitrobenzoate.

In addition, two isomers of chlorogenic acids, presumably isochlorogenic and chlorogenic acids approximately in a ratio of 1 : 10, were found in this extract. These substances have sour, bitter and astringent flavors.  相似文献   

13.
The decarboxylation of phthalic acids was studied with Bacillus sp. strain FO, a marine mixed culture ON-7, and Pseudomonas testosteroni. The mixed culture ON-7, when grown anaerobically on phthalate but incubated aerobically with chloramphenicol, quantitatively converted phthalic acid to benzoic acid. Substituted phthalic acids were also decarboxylated: 4,5-dihydroxyphthalic acid to protocatechuic acid; 4-hydroxyphthalic and 4-chlorophthalic acids to 3-hydroxybenzoic and 3-chlorobenzoic acids, respectively; and 3-fluorophthalic acid to 2-and 3-fluorobenzoic acids. Bacillus sp. strain FO gave similar results except that 4,5-dihydroxyphthalic acid was not metabolized, and both 3- and 4-hydroxybenzoic acids were produced from 4-hydroxyphthalic acid. P. testosteroni decarboxylated 4-hydroxyphthalate (to 3-hydroxybenzoate) and 4,5-dihydroxyphthalate but not phthalic acid and halogenated phthalates. Thus, P. testosteroni and the mixed culture ON-7 possessed 4,5-dihydroxyphthalic acid decarboxylase, previously described in P. testosteroni, that metabolized 4,5-dihydroxyphthalic acid and specifically decarboxylated 4-hydroxyphthalic acid to 3-hydroxybenzoic acid. The mixed culture ON-7 and Bacillus sp. strain FO also possessed a novel decarboxylase that metabolized phthalic acid and halogenated phthalates, but not 4,5-dihydroxyphthalate, and randomly decarboxylated 4-hydroxyphthalic acid. The decarboxylation of phthalic acid is suggested to involve an initial reduction to 1,2-dihydrophthalic acid followed by oxidative decarboxylation to benzoic acid.  相似文献   

14.
Recombinant Escherichia coli have been constructed for the conversion of glucose as well as pentose sugars into L-lactic acid. The strains carry the lactate dehydrogenase gene from Streptococcus bovis on a low copy number plasmid for production of L-lactate. Three E. coli strains were transformed with the plasmid for producing L-lactic acid. Strains FBR9 and FBR11 were serially transferred 10 times in anaerobic cultures in sugar-limited medium containing glucose or xylose without selective antibiotic. An average of 96% of both FBR9 and FBR11 cells maintained pVALDH1 in anaerobic cultures. The fermentation performances of FBR9, FBR10, and FBR11 were compared in pH-controlled batch fermentations with medium containing 10% w/v glucose. Fermentation results were superior for FBR11, an E. coli B strain, compared to those observed for FBR9 or FBR10. FBR11 exhausted the glucose within 30 h, and the maximum lactic acid concentration (7.32% w/v) was 93% of the theoretical maximum. The other side-products detected were cell mass and succinic acid (0.5 g/l). Journal of Industrial Microbiology & Biotechnology (2001) 27, 259–264. Received 05 November 2000/ Accepted in revised form 03 July 2001  相似文献   

15.
It was found that when Rhodotorula rubra IFO 0911 was grown in a phenylalanine medium, benzoic acid and p-hydroxybenzoic acid besides cinnamic acid were formed in the cultured both. The conversions of cinnamic acid into benzoic acid and of benzoic acid into p-hydroxybenzoic acid, and the degradation of p-hydroxybenzoic acid were demonstrated in intact cells of Rhodotorula rubra. These activities were observed in the cells grown on various media, including the medium containing no phenylalanine, and were found to be distributed widely in Rhodotorula. The cells of Rhodotorula rubra were also able to degrade p-coumaric acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), p-hydroxyphenyl-acetic acid, 3-methoxy-4-hydroxycinnamic acid (ferulic acid) and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). From these results, the metabolic pathways for phenylalanine and tyrosine in Rhodotorula were discussed.  相似文献   

16.
Growth of Azotobacter vinelandii on Soil Nutrients   总被引:2,自引:0,他引:2       下载免费PDF全文
Azotobacter vinelandii cells grew well in a medium made from soil and distilled water which contained little or no carbohydrate. They utilized p-hydroxybenzoic acid and other phenolic acids, soil nitrogen, and water-soluble mineral substances. Seventeen soils which supported excellent growth of A. vinelandii contained 11 to 18 different phenolic acids each, including p-hydroxybenzoic, m-hydroxybenzoic, vanillic, p-coumeric, syringic, cis- and trans-ferrulic, and other unidentified aromatic acids. Three white, chalky “caliche” soils which were taken from areas where no plants grew failed to support the growth of A. vinelandii, and these contained no, two, and three phenolic acids, respectively. A. vinelandii did not fix nitrogen when growing in dialysates of soils which contained numerous phenolic acids. Growth was ample and rapid in most of the soils tested, but cell morphology was different from that usually seen in chemically defined, nitrogen-free media which contain glucose.  相似文献   

17.
Summary A phenylacetic acid-degrading mixed culture was enriched from effluent of an anaerobic reactor for the treatment of waste water from cellulose bleaching. From this consortium a phenylacetic acid-degrading pure culture, strain DSU3, was isolated and, due to its typical morphology and substrate spectrum, tentatively classified as a Desulfosarcina sp. It could grow on and degrade phenylacetic acid, cyclohexane carboxylate, cyclohexylacetate, benzoate, fumaric acid and several volatile fatty acids, while phenol, o-hydroxybenzoate, p-hydroxybenzoate and glucose were not utilized. Production of mandelic acid from phenylacetic acid by the enrichment culture and utilization of benzoate, an intermediate of the mandelic acid pathway, by strain DSU3 may presumably indicate degradation of phenylacetic acid via the mandelic acid pathway.  相似文献   

18.
Summary Enterobacteria growing on wastewater from olive oil extraction were selected. Among this microflora, strains of Klebsiella oxytoca and Citrobacter diversus able to degrade simple monomeric aromatic compounds were isolated by enrichment culture of the effluent lacking simple sugars. In this preliminary investigation, the phenolic acids tested on solid and liquid media were gentisic, protocatechuic, p-hydroxybenzoic, benzoic, vanillic and ferulic. It was shown that the biodegradation of an aromatic acid is tightly dependent on both the type and the position of the radical substituted on the aromatic ring. Citrobacter was the most efficient strain in metabolizing ferulic acid in liquid medium at a concentration of 1.5 g/l. The substrate biodegradation yield achieved exceeded 86%.  相似文献   

19.
Pseudomonas fluorescens strain FE2 isolated in the presence of ferulic acid was able to grow on hydroxylated and methoxylated compounds bearing the hydroxyl group in the para position. By ethylmethansulphonate (EMS) and transposon mutagenesis, mutants unable to utilize ferulic acid have been selected. The metabolic characterization of the wild-type strain and its mutants indicates that ferulic acid was degraded through the formation of vanillic acid. Mutant FE2B in co-oxidation experiments with glutamate, is able to transform ferulic and dihydroferulic acid into vanillic acid, 4-hydroxycinnamic acid and 3 (4-hydroxyphenyl)-propanoic acid into 4-hydroxybenzoic acid, and 3-hydroxycinnamic acid into 3-hydroxybenzoic acid. The bioconversion of hydroxylated aromatic substrates by the FE2B mutants suggests that the presence of a hydroxyl group on the aromatic ring is required for deacetylase activity.  相似文献   

20.
H. Harms  I. Prieß 《Planta》1973,109(4):307-315
Summary Various methoxybenzoic acids (anisic, veratric and 3,4,5-trimethoxybenzoic acid) labelled specifically in para and meta methoxyl groups as well as the corresponding 4-hydroxybenzoic acids were added to the nutrient solution of sterile cultures of wheat seedlings.The experiments show that the O-demethylation of benzoic acids is specific for para methoxy groups. meta-O-Methyl carbon atoms appeared only to a very low extent as CO2 and no products formed by demethylation of these groups could be isolated.The products formed by O-demethylation of the para methoxyl groups could be identified as p-hydroxybenzoic acid from anisic acid, vanillic acid from veratric acid and syringic acid from trimethoxybenzoic acid. These 4-hydroxybenzoic acids are normally decarboxylated to a high extent after being fed to plants. When they are formed in the plants by O-demethylation they can be isolated partly as free acids but mainly as their glycosides and glucose esters. These observations and some other indications give evidence of a possible compartmentalisation of plant cells.
Im Text verwendete Abkürzungen c COOH-14C - r Ring-14C - m O-Methyl-14C - As Anissäure - Hb p-Hydroxybenzoesäure - Vr Veratrumsäure - Vs Vanillinsäure - Sy Syringasäure - Tmb 3,4,5-Trimethoxybenzoesäure. Beispiel - mVr-3 Veratrumsäure-(3-O-Methyl-14C) - mVr-4 Veratrumsäure-(4-O-Methyl-14C) Herrn Prof. Dr. W. Flaig zum 60. Geburtstag gewidmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号