首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
MacArthur and Wilson’s equilibrium theory is one of the most influential theories in ecology. Although evolution on islands is to be important to island biodiversity, speciation has not been well integrated into island biogeography models. By incorporating speciation and factors influencing it into the MacArthur-Wilson model, we propose a generalized model unifying ecological and evolutionary processes and island features. Intra-island speciation may play an important role in both island species richness and endemism, and the contribution of speciation to local species diversity may eventually be greater than that of immigration under certain conditions. Those conditions are related to the per species speciation rate, per species extinction rate, and island features, and they are independent of immigration rate. The model predicts that large islands will have a high, though not the highest, proportional endemism when other parameters are fixed. Based on the generalized model, changes in species richness and endemism on an oceanic island over time were predicted to be similar to empirical observations. Our model provides an ideal starting point for re-evaluating the role of speciation and re-analyzing available data on island species diversity, especially those biased by the MacArthur-Wilson model.  相似文献   

2.
A general dynamic theory of oceanic island biogeography   总被引:3,自引:2,他引:1  
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.  相似文献   

3.
Abstract: The long‐term diversification of life probably cannot be modelled as a simple equilibrial process: the time scales are too long, the potential for exploring new ecospace is too large and it is unlikely that ecological controls can act at global scales. The sum of many clade expansions and reductions, each of which happens according to its own dynamic, probably approximates more a damped exponential curve when translated into a global‐scale species diversification curve. Unfortunately, it is not possible to plot such a meaningful global‐scale species diversification curve through time, but curves at higher taxonomic levels have been produced. These curves are subject to the vagaries of the fossil record, but it is unlikely that the sources of error entirely overwhelm the biological signal. Clades radiate when the external and internal conditions are right: a new territory or ecospace becomes available, and the lineage has acquired a number of characters that open up a new diet or mode of life. Modern high levels of diversity in certain speciose clades may depend on such ancient opportunities taken. Dramatic climatic changes through the Quaternary must have driven extinctions and originations, but many species responded simply by moving to more favourable locations. Ecological communities appear to be no more than merely chance associations of species, but there may be real interactions among species. Ironically, high species diversity may lead to more speciation, not, as had been assumed, less: more species create more opportunities and selective pressures for other species to respond to, rather than capping diversity at a fixed equilibrium level. Studies from the scale of modern ecosystems to global long‐term patterns in the fossil record support a model for the exponential diversification of life, and one explanation for a pattern of exponential diversification is that as diversity increases, new forms become ever more refinements of existing forms. In a sense the world becomes increasingly divided into finer niche space. Organisms have a propensity to speciate freely, species richness within ecosystems appears to generate opportunities for more speciation, clades show all kinds of patterns from sluggish speciation rates and constant diversity through time to apparently explosive speciation, and there is no evidence that rapidly speciating clades have reached a limit, nor that they are driving other clades to extinction. A corollary of this view is that current biodiversity must be higher than it has ever been. Limits to infinite growth are clearly local, regional, and global turnover and extinction events, when climate change and physical catastrophes knock out species and whole clades, and push the rising exponential curve down a notch or two.  相似文献   

4.
MacArthur and Wilson’s equilibrium theory revolutionized the field of island biogeography and, to a large degree, ecology as well. The theory, which quickly became the ruling paradigm of island biogeography, has changed little over the past three decades. It has not kept pace with relevant theory and our growing appreciation for the complexity of nature, especially with empirical findings that species diversity on many islands: 1) is not in equilibrium; 2) is influenced by differences in speciation, colonization, and extinction among taxa; and 3) is influenced by differences among islands in characteristics other than area and isolation. The discipline of biogeography, itself, is in a state of disequilibrium. We may again be about to witness another paradigm shift, which will see the replacement of MacArthur and Wilson’s theory. Wherever this shift may take us, we are confident that the next generation of biogeographers will still look to islands for insights into the forces that shape biological diversity.  相似文献   

5.
Two conflicting hypotheses have been proposed to explain large‐scale species diversity patterns and dynamics. The unbounded hypothesis proposes that regional diversity depends only on time and diversification rate and increases without limit. The bounded hypothesis proposes that ecological constraints place upper limits on regional diversity and that diversity is usually close to its limit. Recent evidence from the fossil record, phylogenetic analysis, biogeography, and phenotypic disparity during lineage diversification suggests that diversity is constrained by ecological processes but that it is rarely asymptotic. Niche space is often unfilled or can be more finely subdivided and still permit coexistence, and new niche space is often created before ecological limits are reached. Damped increases in diversity over time are the prevalent pattern, suggesting the need for a new ‘damped increase hypothesis'. The damped increase hypothesis predicts that diversity generally increases through time but that its rate of increase is often slowed by ecological constraints. However, slowing due to niche limitation must be distinguished from other possible mechanisms creating similar patterns. These include sampling artifacts, the inability to detect extinctions or declines in clade diversity with some methods, the distorting effects of correlated speciation‐extinction dynamics, the likelihood that opportunities for allopatric speciation will vary in space and time, and the role of undetected natural enemies in reducing host ranges and thus slowing speciation rates. The taxonomic scope of regional diversity studies must be broadened to include all ecologically similar species so that ecological constraints may be accurately inferred. The damped increase hypothesis suggests that information on evolutionary processes such as time‐for‐speciation and intrinsic diversification rates as well as ecological factors will be required to explain why regional diversity varies among times, places and taxa.  相似文献   

6.
The idea that the number of species within an area is limited by a specific capacity of that area to host species is old yet controversial. Here, we show that the concept of carrying capacity for species richness can be as useful as the analogous concept in population biology. Many lines of empirical evidence indicate the existence of limits of species richness, at least at large spatial and phylogenetic scales. However, available evidence does not support the idea of diversity limits based on limited niche space; instead, carrying capacity should be understood as a stable equilibrium of biodiversity dynamics driven by diversity‐dependent processes of extinction, speciation and/or colonization. We argue that such stable equilibria exist even if not all resources are used and if increasing species richness increases the ability of a community to use resources. Evaluating the various theoretical approaches to modelling diversity dynamics, we conclude that a fruitful approach for macroecology and biodiversity science is to develop theory that assumes that the key mechanism leading to stable diversity equilibria is the negative diversity dependence of per‐species extinction rates, driven by the fact that population sizes of species must decrease with an increasing number of species owing to limited energy availability. The recently proposed equilibrium theory of biodiversity dynamics is an example of such a theory, which predicts that equilibrium species richness (i.e., carrying capacity) is determined by the interplay of the total amount of available resources, the ability of communities to use those resources, environmental stability that affects extinction rates, and the factors that affect speciation and colonization rates. We argue that the diversity equilibria resulting from these biodiversity dynamics are first‐order drivers of large‐scale biodiversity patterns, such as the latitudinal diversity gradient.  相似文献   

7.
Aim To explore global patterns of riverine fish endemism by applying an island biogeography framework to river drainage basins and highlight evolutionary mechanisms producing two kinds of endemism: neo‐endemism, arising from within‐drainage cladogenetic speciation, and palaeo‐endemism, arising from species range contraction or anagenetic speciation. Location World‐wide. Methods We use a uniquely comprehensive data set of riverine fish species distributions to map global fish endemism patterns. We then use the relationships between (1) total species richness and proportions of endemic species and (2) total species richness and a measure of in situ (i.e. within‐drainage basin) probability of speciation by cladogenesis, to identify the two distinct forms of endemism. After separating drainage basins into two different sets according to dominance of one of these two forms, we apply a model averaging procedure to highlight, for both datasets, the environmental and historical variables that better explain endemism patterns. We finally analyse the effect of biotic components related to dispersal ability on the percentages of both kinds of endemism among lineages. Results Our results indicate that the two types of endemism are distributed differently across space and taxonomic lineages: (1) neo‐endemism, positively related to the overall richness of the drainage basin, is essentially linked to in situ cladogenetic speciation and is positively related to drainage basin area, negatively related to climate variability since glacial periods and negatively related to all proxies of dispersal ability; and (2) palaeo‐endemism, not directly contributing to drainage basin richness, is a pure process of extinction through range contraction and/or isolation through time and is mostly related to geographic isolation, glacial history and positively related to marine‐derived origin of families. Main conclusions The non‐random spatial and taxonomic distribution of neo‐endemism and palaeo‐endemism sharply reflects the role of evolutionary processes and provides a way to identify areas of high conservation interest based on their high present and future diversification potential.  相似文献   

8.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

9.
Abstract How to maximize the conservation of biodiversity is critical for conservation planning, particularly given rapid habitat loss and global climatic change. The importance of preserving phylogenetic diversity has gained recognition due to its ability to identify some influences of evolutionary history on contemporary patterns of species assemblages that traditional taxonomic richness measures cannot identify. In this study, we evaluate the relationship between taxonomic richness and phylogenetic diversity of angiosperms at genus and species levels and explore the spatial pattern of the residuals of this relationship. We then incorporate data on historical biogeography to understand the process that shaped contemporary floristic assemblages in a global biodiversity hotspot, Yunnan Province, located in southwestern China. We identified a strong correlation between phylogenetic diversity residuals and the biogeographic affinity of the lineages in the extant Yunnan angiosperm flora. Phylogenetic diversity is well correlated with taxonomic richness at both genus and species levels between floras in Yunnan, where two diversity centers of phylogenetic diversity were identified (the northwestern center and the southern center). The northwestern center, with lower phylogenetic diversity than expected based on taxonomic richness, is rich in temperate‐affinity lineages and signifies an area of rapid speciation. The southern center, with higher phylogenetic diversity than predicted by taxonomic richness, contains a higher proportion of lineages with tropical affinity and seems to have experienced high immigration rates. Our results highlight that maximizing phylogenetic diversity with historical interpretation can provide valuable insights into the floristic assemblage of a region and better‐informed decisions can be made to ensure different stages of a region's evolutionary history are preserved.  相似文献   

10.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

11.
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.  相似文献   

12.
Geographic range size and evolutionary age in birds   总被引:3,自引:0,他引:3  
Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently; and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed.  相似文献   

13.
The native land-snail fauna of the Hawaiian islands was investigated from a combined perspective of ecological and historical, vicariant, and dispersalist biogeography. There were more than 750 described, valid species; almost all were endemic to the archipelago, many to single islands. Path analysis showed that island area, per se, had the strongest influence on numbers of species. Island altitude and number of plant communities, both strongly related to area and both dimensions of habitat diversity, also had major influences. The influence of island age was complex. A direct effect, older islands having more species, was more than counterbalanced by the strong indirect effects of age on area and altitude: older islands are smaller and lower, and smaller, lower islands had fewer species. Distance of an island from a source of colonization was of minor importance. Species richness thus appears to be related almost exclusively to evolutionary radiation in situ and not to an equilibrium between immigration and extinction. Islands need not be extremely isolated for evolutionary radiation to be more important than immigration/extinction dynamics in determining species richness, but isolation is a relative term dependent on the dispersal abilities of the organisms in question. Numbers of recorded species were also strongly correlated with collecting effort on each island, a result that stands as a warning to others involved in such studies. Numbers of species in different families were not evenly distributed across islands. Notably, Kauai had more amastrids and helicinids and fewer achatinellids than predicted; Oahu had more amastrids but fewer pupillids and succineids than predicted; Hawaii exhibited the opposite pattern from Oahu. These patterns may partly reflect the vagaries of collecting/describing effort, but some may be due to the combined effects of historical factors and competitive exclusion. The distribution of shell height/diameter was bimodal with a distinct absence of more or less equidimensional species, a general pattern seen in other faunas. Among the pulmonates, tall species predominated, suggesting a relative lack of opportunity for globular/flat species. Notably, amastrids occurred in both modes, evidence that, at least in part, ecological not taxonomic factors underlie the bimodality. The proportions of tall and globular/flat species did not vary among islands. Prosobranchs were mostly low-spired but generally less flat than the pulmonates in the low-spired mode. The islands were probably colonized originally by small taxa. Large, tall shells are found only on Kauai and Niihau, the oldest of the main islands, suggesting that opportunities for such species are probably available on other islands.  相似文献   

14.
More than two decades after its publication, MacArthur and Wilson's equilibrium model of insular biogeography continues to provide the conceptual foundation for investigating the distribution of species on islands and the composition of insular biotas. During this period, studies of the distributions of mammals among insular habitats have tested, modified, and extended MacArthur and Wilson's simple formalism to enhance greatly our understanding of the complexities of biogeographic patterns and processes. The papers in this symposium summarize many of the past contributions of mammalian biogeographers and introduce important new data and ideas. The diversity of biological characteristics and associated distributional patterns exhibited by mammals has facilitated this endeavour. Some insular mammalian faunas appear to represent approximate equilibria between opposing rates of contemporary colonization and extinction. Other faunas are currently decreasing in diversity because of extinctions, owing either to natural habitat fragmentation that has occurred since the Pleistocene or to human activities within the last few centuries. Still other faunas have been increasing in diversity (at least until recent human impacts) because limiting rates of origination, both colonization and speciation, have been extremely low. The questions and analyses of island biogeography can also be applied to continents with comparable overall results: the distributions of continental faunas reflect the consequences of similar processes of colonization, speciation and extinction. Analyses of insular distributions show unequivocally that probabilities of extinction, colonization and speciation are highly deterministic and vary in predictable ways among different taxa and archipelagos. These findings have important implications for applying the theory and data of insular biogeography to the pressing practical problems of designing natural reserves to preserve native species.  相似文献   

15.
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non‐equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological–evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space‐for‐time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local‐scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non‐native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.  相似文献   

16.
Islands acquire species through immigration and speciation. Models of island biogeography should capture both processes; however quantitative island biogeography theory has either neglected speciation or treated it unrealistically. We introduce a model where the dominance of immigration on small and near islands gives way to an increasing role for speciation as island area and isolation increase. We examine the contribution of immigration and speciation to the avifauna of 35 archipelagoes and find, consistent with our model, that the zone of radiation comprises two regions: endemic species diverged from mainland sister-species at intermediate isolation and from insular sister-species at higher levels of isolation. Our model also predicts species-area curves in accord with existing research and makes new predictions about species ages and abundances. We argue that a paucity of data and theory on species abundances on isolated islands highlights the need for island biogeography to be reconnected with mainstream ecology.  相似文献   

17.
Weak links, in the form of inadequacies in both reasoning and supporting evidence, exist at several critical steps in the derivation of an hierarchical concept of evolution from punctuated equilibria. Punctuation itself is predicated on a distorted reading of phyletic change as phyletic gradualism, and of allopatric speciation as the instantaneous formation of unchanging typological taxa. The concept of punctuation is further confounded by the indescriminate employment of the same term to denote both a causal explanation for evolutionary change and an outcome of substantiated evolutionary processes. Even when the intended usage for the term is specified, each denotation of punctuation entails respective drawbacks. As a causal explanation, punctuation clearly belongs to the class of quantum theories with all their attendant impedimenta, including special salsatory non-adaptive mechanisms of evolutionary change. Redefinition of punctuation as a pattern of morphologic change reduces it to one possible outcome of known microevolutioanry processes, thus obviating any need for an hierarchical explanation of macroevolution. While vacillation between usages has preserved the term in the literature, the end result of this obfuscation has been a circle of faulty reasoning in which the pattern of punctuation is invoked as its own proof. Widespread confusion concerning what constitutes an adequate test of punctuation is directly attributable to imprecision in both the original and revised formulations of the concept.The argument for species-level selection is based on the typological and philosphically flawed premise of species as individuals, and further requires the hypothesis of heritable emergent properties, for which empirical evidence is lacking.Extrapolation of hierarchy to higher taxonomic levels depends on the unproven assumption that mass extinction constitutes a causal mechanism for macroevolution which is qualitatively distinct from, and not reducible to, the causes of microevolution.Because key elements of hierarchical theory depend upon misrepresentations of the synthetic theory, semantic circumvention, and questionable reasoning, and because its central assertions remain unsubstantiated by empirical evidence, the derivation of an hierarchical theory of evolution from punctuation constitutes an exercise an futility and should be abandoned.  相似文献   

18.
Aim  A latitudinal gradient in species richness, defined as a decrease in biodiversity away from the equator, is one of the oldest known patterns in ecology and evolutionary biology. However, there are also many known cases of increasing poleward diversity, forming inverse latitudinal biodiversity gradients. As only three processes (speciation, extinction and dispersal) can directly affect species richness in areas, similar factors may be responsible for both classical (high tropical diversity) and inverse (high temperate diversity) gradients. Thus, a modified explanation for differential species richness which accounts for both patterns would be preferable to one which only explains high tropical biodiversity.
Location  The New World.
Methods  We test several proposed ecological, temporal, evolutionary and spatial explanations for latitudinal diversity gradients in the New World snake tribe Lampropeltini, which exhibits its highest biodiversity in temperate regions.
Results  We find that an extratropical peak in species richness is not explained by latitudinal variation in diversification rate, the mid-domain effect, or Rapoport's rule. Rather, earlier colonization and longer duration in the temperate zones allowing more time for speciation to increase biodiversity, phylogenetic niche conservatism limiting tropical dispersal and the expansion of the temperate zones in the Tertiary better explain inverse diversity gradients in this group.
Main conclusions  Our conclusions are the inverse of the predictions made by the tropical conservatism hypothesis to explain higher biodiversity near the equator. Therefore, we suggest that the processes invoked are not intrinsic to the tropics but are dependent on historical biogeography to determine the distribution of species richness, which we refer to as the 'biogeographical conservatism hypothesis'.  相似文献   

19.

Aim

To investigate the impact of different treatments of the IUCN Data Deficient (DD) category on taxonomic and geographical patterns of extinction risk in crayfish, freshwater crabs and dragonflies.

Location

Global.

Methods

We used contingency tables to evaluate taxonomic and geographical selectivity of data deficiency and extinction risk for three invertebrate taxonomic groups (crayfish, dragonflies and damselflies, and freshwater crabs) based on their IUCN Red List status. We investigated differences in patterns of data deficiency and extinction risk among taxonomic families, geographical realms and taxonomic families within geographical realms for each of the three groups. At each level, we evaluated the impact of uncertainty conferred by the conservation status of DD species on extinction risk patterns exhibited by that group. We evaluated three scenarios: excluding DD species, treating all DD species as non‐threatened and treating all DD species as threatened.

Results

At the global scale, DD species were taxonomically non‐randomly distributed in freshwater crabs and dragonflies, and geographically non‐randomly distributed in all three taxonomic groups. Although the presence of under‐ or over‐threatened families and biogeographical realms was generally unchanging across scenarios, the strength of taxonomic and geographical selectivity of extinction risk varied. There was little consistent evidence for taxonomic selectivity of extinction risk at sub‐global scales in freshwater crabs and dragonflies, either among biogeographical realms or among scenarios.

Main conclusions

Global patterns of taxonomic selectivity and geographical selectivity were generally consistent with one another and robust to different treatments of DD species. However, sub‐global scale conservation prioritization from these types of data sets will require increased investment to make accurate decisions. Given the current levels of data uncertainty, the relative importance of biological characteristics and threatening processes in driving extinctions in freshwater invertebrates cannot be easily determined. We recommend that DD species should be given high research priority to determine their true status.  相似文献   

20.
Questions of mass extinction   总被引:3,自引:0,他引:3  
Earth's biodiversity is being overtaken by a mass extinction which, if allowed to proceed unchecked, could well eliminate between one quarter and one half of all species. Our conservation responses must be science-based if we are to address the problem in its full scope and with most productive use of conservation resources. Yet our scientific understanding of the impending mass extinction is inadequate in many salient respects. We have only a rudimentary grasp of the number of species at risk, of biodiversity depletion processes, of island biogeography in practice, and of evolutionary consequences, to cite but a few leading questions. The same applies to the issue of the most efficient strategies to confront the conservation challenge. Worse, there is scant evidence (due in part to gross lack of funding) of a comprehensive and coordinated campaign to mount a research effort of scope to match the problem. The paper broaches ten key questions that warrant urgent attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号