首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary Epithelial cells of normal rat (adult) liver and hamster embryo in tissue culture communicate through membrane junctions: the membrane regions of cell contact are highly ion-permeable. Cancerous counterparts of these cells, cells from Morris' and Reuber's liver tumors and from x-ray-transformed embryo cultures, do not communicate under the same experimental conditions. These cells also fail to communicate with contiguous normal cells. Cancerous fibroblastic cells from a variety of tissues, including cells transformed by virus, x-radiation and chemicals, communicate as well as their normal counterparts; this is so for long- and short-term cell cultures. Communication in some fibroblastic cells is sensitive to components of blood serum: normal and transformed hamster embryo fibroblasts, which communicate when cultured in medium containing fetal calf serum, appear to lose communication in medium containing calf serum; the converse holds for hamster (adult) fibroblasts and 3T3 cells.The preceding papers of this series appeared in the Journal of Cell Biology.Trainee of the National Institutes of Health, National Cancer Institute, Grant CA 05011.  相似文献   

2.
Summary Composition and interactions of cell types in rainbow trout (Oncorhynchus mykiss) liver digested with collagenase and cultured in serum-free media were investigated. Suspensions obtained after digesting trout liver with collagenase contained all the cell types present in the liver, including liver parenchymal cells (hepatocytes), biliary epithelial cells, sinusoidal endothelium, fat-storing cells of Ito, and macrophages. A major cell pellet, mainly hepatocytes but containing significant numbers of biliary epithelial cells, was obtained by centrifuging the cell suspension at 120×g for 1 min. Cells present in this pellet quantitatively attached to culture plates coated with a trout skin extract and remain attached for 4 to 6 d with good retention of intracellular enzymes and DNA. When in culture, significant changes in and among the cells were observed. Initial preparations were rounded, single cells. Within several hours, however, cellular interactions leading to aggregation became evident and aggregates increased in size for 2 to 3 d. Scanning electron microscopy (EM) showed frequent shaftlike projections from margins of the aggregates. Transmission EM indicated that these projections represent biliary ductules forming in vitro. Adjacent hepatocytes also showed plasma membrane specializations forming junctional complexes and canaliculi characteristics of normal trout liver. After 5 to 6 d in culture, significant numbers of the cell aggregates dislodged from the plate. Analysis showed the dislodged cells were viable but vacuolated. The reestablishment in vitro of morphologic relationships resembling in situ tissue components suggest these culture preparations may have significant utility in cooperative metabolic studies of cell interactions in trout liver. Supported by grant CA45131 from the National Cancer Institute, Bethesda, MD.  相似文献   

3.
Innumerable toxic substances present in the environment inhibit gap junctions, intercellular membrane channels that play fundamental roles in coordinated function of cells and tissues. Included are persistent organochlorine compounds, which pose health risks to humans and animals owing to their widespread use, bioaccumulation, and ability to inhibit gap junction channel-mediated intercellular communication in liver, lung, skin, heart, and brain cells. In this study, the organochlorine xenobiotics dieldrin and endosulfan, at micromolar concentrations, were found to inhibit gap junction-mediated intercellular communication and induce hypophosphorylation of connexin 43 in cultured rat astrocytes, the predominant cell type in the brain coupled through gap junctions. This inhibition of gap junctional communication was substantially reduced by preincubation with chaetoglobosin K (ChK), a bioactive natural produce previously shown to have ras tumor suppressor activity. Chaetoglobosin K also prevented dieldrin and endosulfan-induced hypophosphorylation of connexin 43 and prevented dieldrin-induced connexin 43 plaque dissolution in both astrocytes and cultured liver epithelial cells. The results suggest that stabilization of the native, phosphorylated form of connexin 43 by ChK may contribute to its ability to prevent organochlorine-induced inhibition of gap junction-mediated communication and dissolution of gap junction plaques within the plasma membrane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Intact rat or human erythrocytes and their isolated (ghost) membranes were incubated with the high speed supernatant fraction of homogenates derived from 32P-labeled rat livers. Phospholipid molecules were transferred between the red cell membranes and the liver extracts, as reflected by the convergence of their specific radioactivities with time. Whereas ghosts usually approached isotopic equilibrium with the liver supernatant fraction during a few hours of incubation at 37° C, the exchange of phospholipids by intact cells was no more than one-half, even after 18 hr. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin were all exchanged in both intact cells and ghosts, albeit to different extents. (A control experiment, incubating 32P-labeled rat erythrocytes or ghosts with unlabeled rat liver extracts, also demonstrated the exchange of all four major phospholipids.) These data may signify that the phospholipids on the cytoplasmic side of the membrane of intact erythrocytes do not exchange with the phospholipids in exogenous liver extracts. If so, all four major phospholipid classes would appear to be present to some extent at both membrane surfaces. The first inference is in agreement with several other studies on this membrane, while the second inference is not.  相似文献   

5.
It is known that the bile canaliculus in the liver of almost all vertebrates is made up of membranes of two or more adjacent liver cells. Studying the liver cell ultrastructure of lasting and fed grass carp and silver carp, it was demonstrated that a bile canaliculus is formed by deep invagination of a cell membrane of one hepatocyte. The membrane forms microvilli along the bile canaliculus. The bile canaliculus is seen in the centre of liver cell cytoplasm on the cross section and stretches from the centre of the liver cell cytoplasm to the cell membrane on the longitudinal section. The bile canaliculus is connected with a small duct cell, which is distinct from a liver cell in its small size, little amount of cell organelles and the presence of cytoplasmic filaments. The terminal part of the biliary tract consists of one liver cell and one bile duct cell. The part of the tract adjacent to the terminal one is composed of two or three small bile duct cells devoid of basal membrane. Thus, the liver parenchyma is constituted of a net of numerous bile ducts. In the portal tract, there is a large bile duct, consisting of 12-13 bile duct cells, surrounded by basal membrane and connective tissue cells.  相似文献   

6.
Summary Two major types of cells can be cultured from early lactation human milks: a colony-forming epithelial cell and an adherent nondividing cell referred to as a foam cell The epithelial cells show a positive reaction with a specific antiserum reactive against membrane components of the milk fat globule, whereas the foam cells do not. The nondividing foam cells are phagocytic and can be killed by silica particles; they produce lysozyme, are resistant to trypsinization, and have Fc receptors. These properties, together with the lack of reaction with antiserum to the milk fat globule membrane, suggest that the foam cells are not terminally differential epithelial cells, but tissue macrophages. R. L. C. was supported by Grant No. Ca 19455 from the National Cancer Institute, a Yamagiawa-Yoshida Memorial International Cancer Study Grant, and the Imperial Cancer Research Fund. J. A. P. was supported by Grant No. CA 19455 from the National Cancer Institute.  相似文献   

7.
Organ-specific metastasis is an important character of cancer cells. Cancer cells that can metastasize to a special organ were thought to have different proteins in cell membrane, which might have potential utility as diagnostic markers and therapeutic targets. In the present work, based on high liver-metastatic gastric cancer cells, XGC9811-L, a screening approach with phage displayed peptide library, was successfully used to isolate 8-mer peptide ligands binding to the target cells. The phage20 had the highest binding efficiency to XGC9811-L cells, which also displayed remarkable cell specificity. Peptide20 that was displayed on phage20 could suppress the motility and invasion of XGC9811-L significantly. The adhesive ability of XGC9811-L to collagen IV was also inhibited by peptide20. Furthermore, phage20 could significantly reduce the incidence of liver metastasis of gastric cancer transplanted into nude mice and was also beneficial for the reduction the number of metastatic nodules in the liver. In conclusion, the phage display is an effective method to screen for the new molecules associated with organ-specific metastasis. The selected peptide20 can reverse the liver metastasis behavior of the gastric cancer cells.  相似文献   

8.
Membrane potential was measured in perfused rat liver and was shown to increase from ?33 ± 1.0 mV in livers from normal rats to ?50 ± 1.1 mV in livers from rats 12 hr after partial hepatectomy. The hyperpolarization of the membrane in regenerating liver was no longer evident after perfusion with 1 mM ouabain for 5 min. Ouabain had a small (4 mV) depolarizing effect on membrane potential in normal liver. The potential measured in normal and regenerating liver decreased as a function of the external potassium concentration above 5 mM; however, the potential was more electronegative in regenerating liver compared to normal liver at all values of external potassium concentration, and the differences in potential between the two kinds of cells did not decrease at higher concentrations of external potassium. Thus, a plot of membrane potential vs external potassium concentration resulted in approximately parallel curves for the two different cell types. We conclude that hyperpolarization of the liver cell membrane is an early event during rat liver regeneration and results from an electrogenic Na-K pump.  相似文献   

9.
Aim of this study was to ascertain whether an impairment of communication between parenchymal and non-parenchymal liver cells involves vitamin A intercellular transport. The following approach was adopted: liver cells were isolated from rats treated chronically with the hydrophobic ionophore monensin i.p. for 3, 5, and 7 weeks and their retinol and dolichol content was assessed. Monensin, which alters membrane flow, was used because it had previously been reported to induce liver steatosis, cholestasis and glycogenolysis after acute treatment and, by preliminary morphological examination, to impair vitamin A transport between stellate cells and hepatocytes. Dolichol was chosen as a biochemical marker because it is a membrane lipid that modulates the fluidity and permeability of the membranes that retinol must cross. After monensin treatment, a load of vitamin A was given to rats three days before sacrifice, to ascertain whether its uptake by sinusoidal liver cells was altered. The main result was a dolichol decrease in hepatocytes and in the Ito-1 subfraction. In this latter, monensin induced a decrease in dolichol content only after vitamin A load. Moreover, while the hepatocytes were able to take up a load of vitamin A normally, the Ito-1 subfraction was no longer able to store retinol. Therefore the polarised transport of retinol between hepatocytes and stellate cells seemed impaired. The behaviour of sinusoidal endothelial cells and Kupffer cells might be ascribed to the functions of these cells and is not significantly modified by monensin. In conclusion, the altered cross-talk between sinusoidal cells in liver pathology might involve retinol as well as cytokines. Different pools of dolichol might have a role in this membrane process in a hydrophobic environment.  相似文献   

10.
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, which contain several donor cell-associated proteins as well as mRNA, miRNA, and lipids and coordinate multiple physiological and pathological functions through horizontal communication between cells. Almost all types of liver cells, such as hepatocytes and Kupffer cells, are exosome-releasing and/or exosome-targeted cells. Exosomes secreted by liver cells play an important role in regulating general physiological functions and also participate in the onset and development of liver diseases, including liver cancer, liver injury, liver fibrosis and viral hepatitis. Liver cell-derived exosomes carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets of liver disease. This review discusses the functions of exosomes derived from different liver cells and provides novel insights based on the latest developments regarding the roles of exosomes in the diagnosis and treatment of liver diseases.  相似文献   

11.
The many kinds of cell structures involved in cell-cell communication include tight junction, adherens junction and gap junction, but almost all are between adjacent cells. Recently, a general and dynamic membrane tether, termed tunneling nanotubes or membrane nanotubes (MNTs), was discovered to be involved in communication between distant cells. By facilitating intercellular communication, MNTs contribute to many biological functions and pathologic changes in cells. Many works have revealed the structure, formation and functional properties of MNTs. However, as novel structures, further research is needed.  相似文献   

12.
Coordination and synchrony of a variety of cellular activities in tissues of plants and animals occur as a consequence of the transfer of low molecular weight biosynthetic and signaling molecules through specialized structures (plasmodesmata in plant cells and gap junctions in mammalian cells) that form aqueous channels between contacting cells. Investigations with rat liver demonstrated that cell-cell communication is mediated by a 32 kilodalton polypeptide that forms a hexameric pore structure in the plasma membrane. Following association with the same structure in a contiguous cell, a trans-double membrane channel is created that has been termed a gap junction. In plant tissue, long tubelike structures called plasmodesmata are suggested to serve a similar cell-cell linking function between cytoplasmic compartments. Although morphologically distinct, dynamic observations suggest similarities in transport properties between gap junctions and plasmodesmata. Recent work now provides evidence that these functional similarities may reflect a more profound identity between the paradigm animal gap junction polypeptide (32 kilodalton rat liver polypeptide) and an immunologically homologous protein localized to plant plasma membrane/cell wall fractions that may be a component of plasmodesmata.  相似文献   

13.
Tumor metastasis is a hallmark of cancer. The communication between cancer-derived exosomes and stroma plays an irreplaceable role in facilitating pre-metastatic niche formation and cancer metastasis. However, the mechanisms underlying exosome-mediated pre-metastatic niche formation during colorectal cancer (CRC) liver metastasis remain incompletely understood. Here we identified HSPC111 was the leading upregulated gene in hepatic stellate cells (HSCs) incubated with CRC cell-derived exosomes. In xenograft mouse model, CRC cell-derived exosomal HSPC111 facilitated pre-metastatic niche formation and CRC liver metastases (CRLM). Consistently, CRC patients with liver metastasis had higher level of HSPC111 in serum exosomes, primary tumors and cancer-associated fibroblasts (CAFs) in liver metastasis than those without. Mechanistically, HSPC111 altered lipid metabolism of CAFs by phosphorylating ATP-citrate lyase (ACLY), which upregulated the level of acetyl-CoA. The accumulation of acetyl-CoA further promoted CXCL5 expression and secretion by increasing H3K27 acetylation in CAFs. Moreover, CXCL5-CXCR2 axis reinforced exosomal HSPC111 excretion from CRC cells and promoted liver metastasis. These results uncovered that CRC cell-derived exosomal HSPC111 promotes pre-metastatic niche formation and CRLM via reprogramming lipid metabolism in CAFs, and implicate HSPC111 may be a potential therapeutic target for preventing CRLM.Subject terms: Cancer metabolism, Metastasis, Epithelial-mesenchymal transition  相似文献   

14.
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.Subject terms: Cancer microenvironment, Cancer stem cells  相似文献   

15.
We report here that XPA1 human pancreatic cancer cells are dimorphic. After injection in the spleen, XPA1 cells isolated from the primary tumor in the spleen were predominantly round; while cells isolated from the resulting liver metastasis and ascites were comprised of both round- and spindle-shaped cell types. Cancer cells previously grown in the spleen and re-implanted in the spleen developed large primary tumors in the spleen only. Cancer cells isolated from liver metastasis and re-transplanted to the spleen resulted in a primary tumor in the spleen and liver metastasis. Cancer cells derived from ascites and re-transplanted to the spleen developed primary tumors in the spleen and distant metastasis in the liver, lung, and diaphragm in addition to ascites formation. Spindle and round cells were differentially labeled with fluorescent proteins of different colors. After co-injection of the two cell types in the spleen, cells were isolated from the primary tumors, liver metastasis, and ascites and analyzed by color-coded fluorescence microscopy and fluorescence-activated cell sorting (FACS). No significant differences between the percentages of spindle-shaped and round cancer cells in the primary tumor and the liver metastasis were observed. However, spindle-shaped cancer cells were enriched in the ascites. One hundred percent of the spindle-shaped and round cancer cells expressed CD44, suggesting that morphology and metastatic behavior rather than CD44 expression can distinguish the stem-like cells of the XPA1 pancreatic cancer cell line. The spindle-shaped cancer cells had the greater capability for distant metastasis and ascites formation, suggesting they are stem-like cells, which can be readily targeted for therapy.  相似文献   

16.
The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system.  相似文献   

17.
Gap junctions mediate cell–cell communication in almost all tissues, but little is known about their regulation by physiological stimuli. Using a novel single-electrode technique, together with dye coupling studies, we show that in cells expressing gap junction protein connexin43, cell–cell communication is rapidly disrupted by G protein–coupled receptor agonists, notably lysophosphatidic acid, thrombin, and neuropeptides. In the continuous presence of agonist, junctional communication fully recovers within 1–2 h of receptor stimulation. In contrast, a desensitization-defective G protein–coupled receptor mediates prolonged uncoupling, indicating that recovery of communication is controlled, at least in part, by receptor desensitization. Agonist-induced gap junction closure consistently follows inositol lipid breakdown and membrane depolarization and coincides with Rho-mediated cytoskeletal remodeling. However, we find that gap junction closure is independent of Ca2+, protein kinase C, mitogen-activated protein kinase, or membrane potential, and requires neither Rho nor Ras activation. Gap junction closure is prevented by tyrphostins, by dominant-negative c-Src, and in Src-deficient cells. Thus, G protein–coupled receptors use a Src tyrosine kinase pathway to transiently inhibit connexin43-based cell–cell communication.  相似文献   

18.
Exosomes are small vesicles that were initially thought to be a mechanism for discarding unneeded membrane proteins from reticulocytes. Their mediation of intercellular communication appears to be associated with several biological functions. Current studies have shown that most mammalian cells undergo the process of exosome formation and utilize exosome‐mediated cell communication. Exosomes contain various microRNAs, mRNAs and proteins. They have been reported to mediate multiple functions, such as antigen presentation, immune escape and tumour progression. This concise review highlights the findings regarding the roles of exosomes in liver diseases, particularly hepatitis B, hepatitis C, liver cirrhosis and hepatocellular carcinoma. However, further elucidation of the contributions of exosomes to intercellular information transmission is needed. The potential medical applications of exosomes in liver diseases seem practical and will depend on the ingenuity of future investigators and their insights into exosome‐mediated biological processes.  相似文献   

19.
Primary liver cancer mainly includes the following four types: hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA). Recent studies have indicated that there are differences in cancer stem cell (CSC) properties among different types of liver cancer. Liver cancer stem cells (LCSCs), also called liver tumor-initiating cells, have been viewed as drivers of tumor initiation and metastasis. Many mechanisms and factors, such as mitophagy, mitochondrial dynamics, epigenetic modifications, the tumor microenvironment, and tumor plasticity, are involved in the regulation of cancer stemness in liver cancer. In this review, we analyze cancer stemness in different liver cancer types. Moreover, we further evaluate the mechanism of cancer stemness maintenance of LCSCs and discuss promising treatments for eradicating LCSCs.Subject terms: Cancer stem cells, Tumour biomarkers, Prognostic markers, Cancer stem cells  相似文献   

20.
Summary A simple yet effective method (iso-density percoll centrifugation) has been developed for consistently preparing isolated rat liver parenchymal cells with over 98% initial viability. The method has been applied to cells isolated by a variety of collagenase digestion techniques. This procedure involves the low-speed centrifugation (50 ×g) of the initial cell suspension through a percoll medium having a density of 1.06 g/ml and results in the separation of single and viable parenchymal cells from cell aggregates, debris, and nonparenchymal cells. The enriched parenchymal cells have been shown to be superior to untreated cells by a number of criteria including: preparation homogeneity, cell morphology, maintenance of cytochrome P-450, hormonal responsiveness (measured by the induction of tyrosine aminotransferase after treatment with glucagon or dexamethasone, or both), plasma membrane integrity (determined by both trypan blue exclusion and leakage of glutamic-oxaloacetic transaminase), and the DNA repair capability after treatment with benzo[a]pyrene or 2-acetylaminofluorene. This work was supported in part by the National Institutes of Health Biomedical Research Support Program, and National Institute of Environmental Health Services grant (ES-01737) awarded to M.T.S.H., and by National Cancer Institute grants CA-017175, CA-09135, CA-22484 awarded to H.C.P.N.S. was supported by a Cancer Research Campaign Grant (U. K.) through the International Union Against Cancer. This work was presented in part at the 24th Annual Meeting of the Society of Toxicology, 18–22 March 1985, San Diego, CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号