首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The aim of this work was to study various transport phenomena in chitin gels obtained by N-acetylation of chitosan in a water-alcohol mixture. Three kinds of transport were investigated: the sorption of solutes interacting with chitin, the desorption of solutes without significant interaction with the polymer, and osmosis phenomena. In the case of interactive sorption, dyes having different chemical structures such as C.I. Acid Blue 74, C.I. Reactive Violet 5 or C.I. Direct Red 28 were tested. Sorptions of C.I. Acid Blue 74 and C.I. Reactive Violet 5 depend on the charge density of the polymer network and, as a consequence, on DA, pH and the dielectric constant of the media. This result reveals the importance of electrostatic interactions. On the other hand, the sorption of C.I. Direct Red 28 is mainly due to hydrophobic interactions and H-bonding, it is limited to the extreme surface of the gel. Concerning the non-interactive desorption, solutes of different steric hindrance such as PP vitamin, B1 vitamin and caffeine exhibit similar diffusion coefficients located within 3.7-5.6x10(-6) cm(2) s(-1). Finally, the osmotic behaviour of the gel immersed in a concentrated solution of gelatin allows us to multiply by 25 the concentration of chitin in the gel without any penetration of gelatin.  相似文献   

2.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

3.
A detailed account of physical bulk gel and bead formation from various chitin solutions and nonsolvents is given. Instant gel formation occurs upon contact of chitin solutions in dimethylacetamide (DMAc)/lithium chloride (LiCl) or N-methyl-pyrrolidinone (NMP)/LiCl solvents and nonsolvents such as water, ethanol, or acetone. Ethanol was found to be the optimal nonsolvent for homogeneous spherical bead formation from chitin solutions. Similarly, DMAc-based chitin solutions proved to yield higher quality beads compared to NMP-based solutions. The differences in bead morphology, crystallinity, and thermal degradation are explained in light of the attainment of a balance between attractive hydrogen bonding in the chitin gel network and segment–nonsolvent interactions. The dependence of swelling of chitin gels on pH indicated a maximum of swelling ratio value of 4.3 at pH 11 in aqueous solutions while the equilibrium swelling ratio value of chitin beads formed with ethanol reached a maximum of 2.4. Bulk gels formed under favorable conditions were demonstrated to be recyclable after solvent separation and drying.  相似文献   

4.
Preparation of chitin/cellulose composite gels and films with ionic liquids   总被引:1,自引:0,他引:1  
In this study, we performed preparation and characterizations of the chitin/cellulose composite gels and films using the two ionic liquids, 1-allyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride. First, chitin and cellulose were dissolved in each appropriate ionic liquid. Then, the two liquids were mixed in the desired ratios at 100 °C to give the homogeneous mixtures. The gels were obtained by standing the mixtures for 4 days. On the other hand, the films were obtained by casting the mixtures on glass plates, followed by soaking in water and drying. The obtained gels and films were characterized by XRD and TGA measurements. The mechanical properties of the gels and films were evaluated under compressive and tensile modes, respectively.  相似文献   

5.
Adhesion behaviour of lymphocytes of mouse spleen on the surfaces of chitin and its derivatives was studied. The amount of adhering B lymphocytes was enhanced by the deacetylation of N-acetyl groups and depressed by the introduction of carboxyl groups to the GlcNAc residues of chitin. B lymphocytes have been shown to adhere more effectively to the surface of chitin derivatives than IgG negative cells such as T lymphocytes. However, some morphological change in lymphocyte cells has been observed on adhesion to the basic surface of deacetylated chitin, in spite of little change on neutral or acidic surfaces of chitin derivatives.  相似文献   

6.
It has long been known that globular protein molecules in concentrated aqueous solution can be converted into a different form by heating or use of denaturing agents. Under certain conditions of pH and ionic strength, elastic gels are formed. This work describes kinetic measurements of viscosity and elasticity close to the gel point (sol-gel transition) in bovine serum albumin solutions. These studies and optical rotation measurements near the gel point lend support to the conclusions of earlier structural studies on this system, that the gel is fibrillar in nature.  相似文献   

7.
8.
9.
A sample of chitin isolated from the shell of the crab Scylla serrata had, when in lithium thiocyanate solution, an average, weight-average molecular weight (1) of 1.036 x 106 daltons, an intrinsic dissymmetry (2) of 1.93, and a Z-average radius of gyration (3) of 64.14 nm. Carboxymethylchitin and glycol chitin, in 0.5M sodium chloride, had, respectively, (1) 1.896 and 1.819 x 106 daltons, (2) 3.25 and 4.31. and (3) 143.49 and 251.57 nm. They had similar degrees of polymerization, they underwent dissociation as the concentration of sodium chloride was increased to 2.5M, and the molecular packing of the chains was essentially side-by-side. Chitin in 5.55M lithium thiocyanate and carboxymethylchitin in 2.5M sodium chloride had similar degrees of polymerization. It is concluded that a small but significient number of the amino groups in the chitin molecule are not acetylated.  相似文献   

10.
MDCK cells are grown on various substrates (Thermanox pure, extracellular matrix (ECM), dried or wet collagen type I or type III), on floating collagen and enclosed in collagen gels, and their differentiation behaviour is investigated electron microscopically. The cells grown on ECM or dried collagen (type I and type III) do not show any changes as compared with the controls (Thermanox). Differentiation processes can only be observed when the cells are grown on wet collagen (type I and type III), especially on floating collagen and enclosed in collagen gels. These differentiation processes comprise changes in the cell shape, an increase in the number of microvilli, an increase in the length of the lateral contact zone with the formation of gap junctions and desmosomes, and an increase in the number and size of the cell organelles. A basement membrane only develops in the form of short segments. Moreover, on floating collagen and in collagen gels three-dimensional, organoid structures develop: cell aggregates with central lumina and tubuli. They are formed by cuboid cells that also exhibit indications of differentiation. Basement membrane fragments occur more often and are longer. It can be concluded from these findings that the chemical structure of the substrate does not play the primary role in the described process. It is rather the physical properties, probably the plasticity, that are of significance. Due to this property the cells change their shape and the contact areas increase in size. The establishment of contacts might be the triggering factor for differentiation. Organoid structures with lumina develop when the apical surface comes into contact with other cells or collagen gels. The pronounced tendency towards polarization necessitates a re-arrangement of three-dimensionally growing cells to structures with lumina. The formation of the basement membrane is the result and not the cause of differentiation.  相似文献   

11.
The fungal chitin deacetylases (CDA) studied so far are able to perform heterogeneous enzymatic deacetylation on their solid substrate, but only to a limited extent. Kinetic data show that about 5-10% of the N-acetyl glucosamine residues are deacetylated rapidly. Thereafter enzymatic deacetylation is slow. In this study, chitin was exposed to various physical and chemical conditions such as heating, sonicating, grinding, derivatization and interaction with saccharides and presented as a substrate to the CDA of the fungus Absidia coerulea. None of these treatments of the substrate resulted in a more efficient enzymatic deacetylation. Dissolution of chitin in specific solvents followed by fast precipitation by changing the composition of the solvent was not successful either in making microparticles that would be more accessible to the enzyme. However, by treating chitin in this way, a decrystallized chitin with a very small particle size called superfine (SF) chitin could be obtained. This SF chitin, pretreated with 18% formic acid, appeared to be a good substrate for fungal deacetylase. This was confirmed both by enzyme-dependent deacetylation measured by acetate production as well as by isolation and assay for the degree of deacetylation (DD). In this way chitin (10% DD) was deacetylated by the enzyme into chitosan with DD of 90%. The formic acid treatment reduced the molecular weight of the polymeric chain from 2x10(5) in chitin to 1.2 x 10(4) in the chitosan product. It is concluded that nearly complete enzymatic deacetylation has been demonstrated for low-molecular chitin.  相似文献   

12.
The vacuum ultraviolet circular dichroism of alginate solutions, gels and solid films is reported. Two previously observed bands at ~215 and ~203 nm are assigned to n → π1 transitions of carboxy groups under different conditions of local environment. Three bands not previously observed are at ~185 nm, assigned to carboxy π → π1 transitions, and at ~169 and ~149 nm, assigned to transitions of the polymer backbone. In the course of the sol (Na+)-gel (Ca2+), the sol (Na+-film (Na+) and the gel (Ca2+)-film (Ca2+) transitions, intensity changes are observed in both the low energy and high energy bands. The c.d. changes during the three transitions differ in magnitude, but are qualitatively the same, from which we conclude that the chain conformations in the gel and films are similar, and that the principal spectral changes have their origin in perturbation of chromophores by site-bound cations.  相似文献   

13.
The enzymatic deacetylation of various chitin preparations was investigated using the fungal chitin deacetylase (CDA) isolated from Rhizopus oryzae growth medium. Specific extracellular enzyme activity after solid state fermentation was 10 times higher than that after submerged fermentation. Natural crystalline chitin is a very poor substrate for the enzyme, but showed a five-time better deacetylation after dissolution and reprecipitation. Chitin particles, enzymatically deacetylated for only 1% exhibited a strongly increased binding capacity towards ovalbumin, while maintaining the rigidity and insolubility of chitin in a moderate acidic environment. Because of the unique combination of properties, these CDA treated chitin materials were named "chit-in-osan". Chitinosan was shown to be an attractive matrix for column chromatography because no hydrogel formation was observed, that impaired the flow of eluent. Under the same conditions, partially deacetylated chitosan swelled and blocked the flow in the column.  相似文献   

14.
This study demonstrates how the mechanical strength of a series of collagen/composite gels can be measured using a penetrometer. It was found that the presence of fibrin in collagen gels resulted in increased gel strength. Similarly hyaluronic acid was found to increase the strength of collagen gels. Addition of heparin weakened collagen gels as did chondroitin-6-sulphate. Neutrophil migration into collagen gels was found to be inversely proportional to gel strength. Fibrin and hyaluronic acid containing gels inhibited neutrophil migration while the presence of heparin and chondroitin sulphate increased neutrophil migration. BHK gel contraction experiments demonstrated how the presence of fibrin prevents gel contraction. Despite increasing gel strength the presence of hyaluronic acid appeared to have no effect on BHK contraction of collagen gels. Similarly the presence of heparin or chondroitin sulphate had no effect on gel contraction by BHK cells.  相似文献   

15.
Gelation/melting cycles of κ-carrageenan/galactomannan (guar, tara and locust bean gums) binary systems have been studied by measuring dynamic rheological parameters. Two experimental conditions were used, (i) the total polysaccharide concentration was kept at 1% and the κ-carrageenan/galactomannan ratio fixed at 4:1 and (ii) the κ-carrageenan concentration was fixed at 0·75% and the galactomannan content varied from 0% to 1·2%. A thermal hysteresis was observed for all mixed systems and was found to depend on the galactomannan used. From a comparison of the gelation temperature (Tg) and melting temperature (Tm) to values obtained with κ-carrageenan alone, it was suggested that galactomannan interferes with gel structure by the formation of a secondary network provided that the M/G ratio is high enough.  相似文献   

16.
17.
18.
19.
A commercial chitin, regenerated chitin prepared from chitin solutions in 6.8% NaOH and N-acetylated chitosans with degrees of N-acetylation (DNAc) of 77–93% were subjected to oxidization in water with NaClO and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxy radical (TEMPO) and NaBr. When regenerated chitin with DNAc of 87% and N-acetylated chitosan with DNAc of 93% were used as starting materials, water-soluble β-1,4-linked poly-N-acetylglucosaminuronic acid (chitouronic acid) Na salts with degrees of polymerization of ca. 300 were obtained quantitatively within 70 min. On the other hand, the original chitin and N-acetylated chitosan with DNAc of 77% did not give water-soluble products, owing to incomplete oxidation. The high crystallinity of the original chitin brought about low reactivity, and the high C2-amino group content of the N-acetylated chitosan with DNAc of 77% led to degradations rather than the selective oxidation at the C6 hydroxyls. The obtained chitouronic acid had low viscosities in water, and clear biodegradability by soil microorganisms.  相似文献   

20.
A chitin membrane was prepared by a new procedure involving coagulation of the chitin solution in N,N-dimethyl acetamide, N-methyl 2-pyrrolidone and lithium chloride (DMA-NMP-LiCl) with 2-propanol. The solute permeability, water sorption and mechanical properties were compared with membranes prepared by two previously reported methods (coagulation of a formic acid and dichloroacetic acid (FA-DCA) solution of chitin with 2-propanol; and coagulation of a trichloroacetic acid and dichloroethane (TCA-DCE) solution of chitin with acetone). The permeability coefficients of the three chitin membranes were higher than a regenerated cellulose membrane (Cuprophane®). The membrane prepared from DMA-NMP-LiCl solution had a higher tensile strength (3·3 Mpa) in the wet state than the others. The membrane obtained from TCA-DCE solution absorbed more water (360%) and the membrane prepared from FA-DCA solution was relatively weak (1·8 MPa) in the wet state. It was suggested that 2-propanol was a favourable coagulant for membrane production. In addition, the effect of the origin of chitin on molecular weight and tensile properties of the membranes was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号