首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here the selection of ultra-potent anti-respiratory syncytial virus (RSV) antibodies for preventing RSV infection. A large number of antibody variants derived from Synagis (palivizumab), an anti-RSV monoclonal antibody that targets RSV F protein, were generated by a directed evolution approach that allowed convenient manipulation of the binding kinetics. Palivizumab variants with about 100-fold slower dissociation rates or with fivefold faster association rates were identified and tested for their ability to neutralize virus in a microneutralization assay. Our data reveal a major differential effect of the association and dissociation rates on the RSV neutralization, particularly for intact antibodies wherein the association rate plays the predominant role. Furthermore, we found that antibody binding valence also plays a critical role in mediating the viral neutralization through a mechanism that is likely unrelated to antibody size or binding avidity. We applied an iterative mutagenesis approach, and thereafter were able to identify palivizumab Fab variants with up to 1500-fold improvement and palivizumab IgG variants with up to 44-fold improvement in the ability to neutralize RSV. These anti-RSV antibodies likely will offer great clinical potential for RSV immunoprophylaxis. In addition, our findings provide insights into engineering potent antibody therapeutics for other disease targets.  相似文献   

2.
We assessed the effect of anti-CD3-stimulated secretion of cultured human Th1- and Th2-like cells on leukotriene C(4) (LTC(4)) secretion in isolated human eosinophils. T helper (Th) cell subsets were generated from human naive CD4(+) T cells cocultured with irradiated human transformed B cells and either recombinant human interleukin (rhIL)-1beta plus rhIL-6 plus rhIL-12 for Th1-like cells or rhIL-1beta plus rhIL-6 plus rhIL-4 for Th2-like cells. Coincubation of eosinophils with 1:5 dilution of Th2-supernatant (Sup) caused an increase in LTC(4) secretion caused by 0.1 microM formyl-Met-Leu-Phe and 5 microg/ml cytochalasin B from 921 +/- 238 to 3,067 +/- 1,462 pg/10(6) eosinophils (P < 0.01). Th1-Sup at the same dilution had no augmenting effect on stimulated secretion of LTC(4) in eosinophils despite substantial concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the supernatant. Dilution of Th1-Sup caused increased LTC(4) that returned to baseline after immunoabsorption of GM-CSF, suggesting the presence of a possible inhibitory factor. We demonstrate that pretreatment of eosinophils with 1:5 dilution of Th2-Sup but not of Th1-Sup causes substantial augmentation of LTC(4) secretion in vitro and establishes that human Th2 cells cause direct augmentation of LTC(4) secretion within 15-30 min of exposure.  相似文献   

3.
The role of T-cell subsets in respiratory syncytial virus (RSV) infection was investigated by using monoclonal antibodies (MAbs) to selectively deplete gnotobiotic calves of CD4+, CD8+, or WC1+ gamma delta T-cell receptor+ lymphocytes. Injection of these MAbs produced specific reductions of the target cell populations in the circulation and tissues. Ten days after RSV infection, immunoglobulin M (IgM), IgG1, and IgA antibodies were detected in sera and lung washings from control calves. Depletion of CD8+ T cells had no effect on either the serum or local antibody responses to RSV, whereas depletion of CD4+ T cells suppressed the antibody responses in two of three calves. The IgM and IgA responses were significantly increased in the lung washings of calves from which WC1+ T cells were depleted. Depletion of CD4+ or WC1+ T cells caused no significant delay in virus clearance, although an increase in the extent of pneumonic consolidation was observed in anti-CD4-treated calves. Nasopharyngeal excretion of RSV was prolonged in calves depleted of CD8+ T cells, and virus was isolated in high titers from lung washings of these animals 10 days after infection, whereas virus had been cleared from lung washings of all other animals. The delayed virus clearance was associated with an increase in the severity of pneumonic consolidation in three of four of the calves from which CD8+ T cells were depleted. This study shows that CD8+ T cells play a dominant role in the recovery of calves from RSV infection.  相似文献   

4.
We have investigated the roles of cytokines in the modulation of human immunodeficiency virus (HIV) production in chronically infected U937 cells upon in vitro differentiation by hydroxyvitamin D3. HIV-infected U937 cells exhibited markedly lower levels of CD4 and HLA-DR antigens than uninfected cells did. Vitamin D3 induced a time-dependent macrophagelike differentiation, as determined by monitoring the expression of some surface antigens by means of the monoclonal antibodies OKM1, OKM5, OKM13, OKM14, OKT4, anti-HLA-DR, TecMG2, TecMG3, LeuM3, LeuM1, anti-HLA-DP, and anti-HLA-DQ. Treatment with hydroxyvitamin D3 resulted in a marked increase in HIV production compared with control cultures. Interleukin 1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF-alpha) were detected in the culture media, whereas interferon (IFN) was not generally found. Using the polymerase chain reaction technique, we found HIV-infected U937 cells to express detectable levels of mRNAs for alpha interferon (IFN-alpha), IFN-beta, TNF-alpha, and IL-1 beta. The addition of TNF resulted in a marked increase of HIV production, whereas IL-1 beta was ineffective. In contrast, both IFN-alpha and IFN-beta exerted some inhibitory effect on HIV production, which was more marked in vitamin D3-treated cultures than in untreated cultures. HIV production was significantly increased by antibodies to IFN-alpha in both untreated and vitamin D3-treated cultures. Anti-IFN-beta antibody increased HIV production only in vitamin D3-treated cells. In contrast, anti-TNF-alpha antibodies markedly decreased HIV production in both control and differentiating U937 cells. Vitamin D3 treatment resulted in a higher expression of TNF receptors in differentiating cells than in control HIV-infected cells. These data demonstrate a strong correlation between HIV production and macrophagelike differentiation in chronically infected U937 cells and suggest that endogenous IFN and TNF exert opposite effects in the regulation of virus production in both undifferentiated and vitamin D3-treated cell cultures.  相似文献   

5.
Long-lasting protective antibody is not normally generated in children following primary respiratory syncytial virus (RSV) infection, frequently leading to reinfection. We used the BALB/c mouse model to examine the role of the nasal-associated lymphoid tissue and the bone marrow in the generation of RSV-specific long-lasting plasma cells, with a view to further understanding the mechanisms responsible for the poorly sustained RSV antibody levels following primary infection. We show here that substantial numbers of RSV-specific plasma cells were generated in the bone marrow following challenge, which were maintained thereafter. In contrast, in the nasal-associated lymphoid tissue, RSV-specific plasma cell numbers waned quickly both after primary infection and after challenge and were not maintained at a higher level after boosting. These data indicate that the inability to generate a robust local mucosal response in the nasal tissues may contribute substantially to the likelihood of subsequent reinfection and that the presence of serum anti-RSV antibody without local protection is not enough to protect against reinfection.  相似文献   

6.
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.  相似文献   

7.
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2a (cytosolic phospholipase A2a) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by b-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a g-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.  相似文献   

8.
An in vitro 51Cr release assay for human antibody-dependent cell-mediated cytotoxicity (ADCC) against HeLa cells infected with respiratory syncytial virus (RSV) has been characterized by using leukophoresed and adherent cell-depleted adult lymphocytes. Lymphoytes from RSV seronegative children were also competent as effector cells. Sera from children with :1) primary and recurrent natural RSV infections, or 2) live attenuated RSV vaccine infection were examined to characterize the behavior of ADCC antibody in vivo. After natural RSV infection ADCC antibody rose and fell more rapidly than neutralizing antibody. In two children undergoing primary RSV infection with attenuated vaccine, neutralizing antibody was formed in the absence of detectable ADCC antibody. The nonparallel behavior of ADCC and neutralizing antibodies suggests the heterogeneity of either the antigen involved or the mechanism of antibody production in the two antibody systems.  相似文献   

9.
We have examined the requirements for the export of leukotriene C4 (LTC4) from cultured human eosinophils. To define saturability and kinetics of LTC4 export, eosinophils were interacted with leukotriene A4 (LTA4) at 37 degrees C, and the methanolic extracts of the cell-associated and extracellular compartments were then analyzed for LTC4 content by reverse phase high performance liquid chromatography with on-line monitoring of absorbance at 280 nm. When LTA4 was added at concentrations from 0 to 100 microM for 10 min at 37 degrees C, the amount of LTC4 released extracellularly became constant at an LTA4 concentration of 7.5 microM or greater even though the amount of intracellular LTC4 continued to increase. When eosinophils were incubated with 50 microM LTA4 for 0-60 min at 37 degrees C and then held at 0 degrees C for the remainder of the 60-min interval, 54.2 and 77.3% (n = 3), respectively, of the total LTC4 was released extracellularly after 15 and 30 min of incubation at 37 degrees C. Eosinophils incubated with 50 microM LTA4 at 0 degrees C for 1 h synthesized 290 pmol of LTC4 (n = 3) which was approximately half-maximal, all of which was retained intracellularly. We utilized the time and temperature dependence of LTC4 export to preload eosinophils with both LTC4 and leukotriene C5 (LTC5) by sequentially supplying them with specific substrates. With increasing concentrations of intracellular LTC5, there was dose-dependent inhibition of the subsequent release of LTC4 at 37 degrees C, with the sum of the released glutathionyl leukotrienes remaining constant. In addition, only minimal competition for LTC4 release occurred when cells were preloaded with both LTC4 and the conjugate of 1-chloro-2,4-dinitrobenzene and reduced glutathione, S-(dinitrophenyl)glutathione. The criteria of saturability, time dependence of LTC4 release at 37 degrees C, competition of LTC4 with LTC5 for release, and the inhibition of LTC4 release at 0 degrees C establish the export of LTC4 from cells as a novel and specific biochemical step distinct from both LTA4 uptake and the conjugation of LTA4 with reduced glutathione by LTC4 synthase to form LTC4.  相似文献   

10.
CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression.  相似文献   

11.
Human respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and young children as well as elderly and immunocompromised populations. However, no RSV vaccines are available. We have explored the potential of virus-like particles (VLPs) as an RSV vaccine candidate. VLPs composed entirely of RSV proteins were produced at levels inadequate for their preparation as immunogens. However, VLPs composed of the Newcastle disease virus (NDV) nucleocapsid and membrane proteins and chimera proteins containing the ectodomains of RSV F and G proteins fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, were quantitatively prepared from avian cells. Immunization of mice with these VLPs, without adjuvant, stimulated robust, anti-RSV F and G protein antibody responses. IgG2a/IgG1 ratios were very high, suggesting predominantly T(H)1 responses. In contrast to infectious RSV immunization, neutralization antibody titers were robust and stable for 4 months. Immunization with a single dose of VLPs resulted in the complete protection of mice from RSV replication in lungs. Upon RSV intranasal challenge of VLP-immunized mice, no enhanced lung pathology was observed, in contrast to the pathology observed in mice immunized with formalin-inactivated RSV. These results suggest that these VLPs are effective RSV vaccines in mice, in contrast to other nonreplicating RSV vaccine candidates.  相似文献   

12.
We studied the role of naturally occurring eosinophil chemotactic factors on leukotriene (LT)C4 production from highly purified (87.1 +/- 2.4%) normodense eosinophils. Platelet activating factor (PAF) directly induced LTC4 production from eosinophils in a dose (10(-9) to 10(-5) M) and a time-dependent manner. PAF (10(-5) M) induced 0.74 +/- 0.08 ng of LTC4 production/10(6) eosinophils. However, lyso-PAF, eosinophil chemotactic factor of anaphylaxis, and LTB4 failed to induce LTC4 production within the tested range. Furthermore, the pre-incubation of eosinophils with 5 micrograms/ml of cytochalasin B did not alter the chemotactic factor-induced LTC4 production. When eosinophils were stimulated by the submaximal concentration (1 microgram/ml) of calcium ionophore A23187, the pre-incubation of eosinophils with 10(-6) M or 10(-5) M of PAF, or 10(-5) M of eosinophil chemotactic factor of anaphylaxis significantly enhanced LTC4 production up to 163.9 +/- 17.5% (p less than 0.05), 279.2 +/- 32.9% (p less than 0.01) and 165.2 +/- 21.2% (p less than 0.05) of the control, respectively. However, the pre-incubation with lyso-PAF or LTB4 failed to enhance A23187-induced LTC4 production. The pre-incubation of eosinophils with phosphatidyl serine also failed to enhance A23187-induced LTC4 production. However, the direct stimulation of protein kinase C by PMA enhanced the submaximal concentration of A23187-induced LTC4 production from eosinophils up to 179.5 +/- 20.9% (p less than 0.05) of the control. Our findings indicate that PAF and ECF-A work not only as chemotactic factors but also induce a functionally active state of eosinophils probably through their post-receptor mechanisms, and contribute to the inflammatory processes.  相似文献   

13.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

14.

Background

Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.

Methods

Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.

Results

RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.

Conclusions

RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.  相似文献   

15.
To investigate possible mediator interaction in asthma, the effect of inhaled leukotriene (LT) C4 on bronchoconstriction provoked by histamine and prostaglandin (PG) D2 was studied in nine asthmatic subjects. The provocation doses of histamine, PGD2, and LTC4 required to produce a 12.5% decrease in baseline forced expiratory volume in 1 s (FEV1, PD12.5) and to further this fall to 25% (PD25-12.5) were determined. On three subsequent occasions, subjects inhaled either the PD12.5 LTC4 plus vehicle or vehicle plus the PD25-12.5 of either histamine or PGD2, and FEV1 and maximal flow at 70% of vital capacity below total lung capacity after a forced partial expiratory maneuver (Vp30) followed for 45 min. From these results, predicted time-course curves for LTC4 with histamine and LTC4 with PGD2 were calculated. On two final occasions, airway caliber was followed for 45 min after inhalation of the PD12.5 LTC4 followed by the PD25-12.5 of either histamine or PGD2. During the first 9 min after LTC4-histamine and LTC4-PGD2, the decreases in airway caliber were greater than the calculated predicted response. This interaction, although small, was significant with LTC4-PGD2 for both FEV1 (P = 0.01) and Vp30 (P less than 0.05) and with LTC4-histamine for Vp30 (P less than 0.05) but not for FEV1 (P less than 0.05). We conclude that inhaled LTC4 interacts synergistically with histamine and PGD2 and that this effect, although small, may be a relevant interaction in asthma.  相似文献   

16.
Inhibition of leukotriene D4 catabolism by D-penicillamine   总被引:5,自引:0,他引:5  
Inhibition of the catabolism of the most biologically potent cysteinyl leukotriene, LTD4, was studied in rat hepatoma cells in vitro and in the rat in vivo. LTD4 dipeptidase, an ectoenzyme on the surface of AS-30D hepatoma cells, exhibited an apparent Km value of 6.6 microM for LTD4. D-Penicillamine and L-penicillamine inhibited this enzyme activity with apparent Ki values of 0.46 mM and 0.21 mM respectively. Bestatin, an inhibitor of the aminopeptidase activity of hepatoma cells, did not affect LTD4 hydrolysis at concentrations as high as 5 mM, indicating that the aminopeptidase did not contribute to LTD4 catabolism. In the rat in vivo, D-penicillamine also inhibited LTD4 catabolism. After intravenous injection of [3H]LTC4 an accumulation of [3H]LTD4 and a retarded formation of [3H]LTE4 were observed in the circulating blood after D-penicillamine pretreatment. Within 1 h after intravenous [3H]LTC4 injection, about 80% of the administered radioactivity was recovered in bile. After D-penicillamine pretreatment [3H]LTD4 was the major biliary leukotriene metabolite, whereas in untreated controls leukotriene metabolites more polar than LTC4 predominated in bile. After stimulation of endogenous leukotriene production in vivo by platelet-activating factor, N-acetyl-LTE4 was the major cysteinyl leukotriene detected in bile. D-Penicillamine treatment prior to platelet-activating factor resulted in the accumulation of LTD4, which under these circumstances was the major endogenous leukotriene metabolite detected in bile.  相似文献   

17.
Human blood eosinophils and neutrophils that had been incubated with the supernatants of cultures of lipopolysaccharide (LPS)-stimulated blood mononuclear cells demonstrated respective enhanced abilities to produce immunoreactive leukotriene C4 (LTC4) and immunoreactive leukotriene B4 (LTB4) after activation by the calcium ionophore A23187. Under optimal conditions, the enhancing effect was observed with the eosinophils (n = 21) and the neutrophils (n = 14) from all but one donor of each type of granulocyte. Enhancement was maximum when granulocytes were preincubated with a 1/3 dilution of LPS-stimulated mononuclear cell culture supernatants for 1 to 2.5 min and were then stimulated with 2.5 microM ionophore for 1 to 2 min (neutrophils) or 15 min (eosinophils). Maximal enhancement ranged from 20 to 4500% for LTC4 generation by eosinophils (geometric mean, 87%) and from 30 to 1600% for LTB4 generation by neutrophils (geometric mean, 105%). There was no enhancement of leukotriene biosynthesis when the LPS-stimulated mononuclear cell culture supernatants and ionophore were added simultaneously to the granulocytes. The enhancing activity for LTC4 generation by eosinophils was removed by washing the cells after the addition of the LPS-stimulated mononuclear cell culture supernatants and before the introduction of ionophore. This enhancing activity was produced by Ig-, Leu-1- adherent blood mononuclear cells, which are presumed to be monocytes; supernatants of adherent cells augmented A23187-induced LTC4 generation by eosinophils from 21 to 2300% (geometric mean, 402%) in 11 experiments and LTB4 generation by neutrophils from 7 to 200% (geometric mean, 60%) in 10 experiments. There was an inverse correlation between the percent enhancement and the LTC4 levels produced by stimulated eosinophils in the absence of the monokine(s) (r = -0.79, p less than 0.01), but not between percent enhancement and the LTB4 levels generated by ionophore-activated neutrophils in the control buffer. The activity of the monocyte-derived enhancing material on each type of granulocyte was relatively heat stable. Enhancement of eosinophil production of LTC4 was associated with an acidic group of monocyte-derived molecules having isoelectric points of 4.2 to 4.3, 4.5 to 4.6, and 4.9, and exhibiting marked heterogeneity in size.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Mouse E-mast cells were differentiated and grown by culturing bone marrow cells in medium containing WEHI-3-conditioned medium. These cells possess surface receptors to the following agglutinins: peanut (PNA), concanavalin A (Con A), and soybean (Sb). One to 200 micrograms of PNA/10(6) E-mast cells selectively stimulated the generation of leukotriene C4 (LTC4) in the absence of beta-hexosaminidase release. Exposure of 10(6) E-mast cells to 1 to 200 micrograms Con A or Sb had no effect either on preformed mediator release or on the generation of leukotrienes. LTC4 was quantitated by integrated UV absorbance after resolution by reverse phase high pressure liquid chromatography. The optimum release of LTC4 (13.2 ng/10(6) cells) was achieved by 50 micrograms of PNA/10(6) cells. The response is characterized by the inhibition by excess amounts of PNA. The amount of LTC4 generated during optimal PNA stimulation is lower than the amount produced after stimulation by IgE-antigen or by calcium ionophore A23187 (19.8 ng and 148 ng, respectively). The release of LTC4 began within 5 min after PNA stimulation, and reached a plateau within 45 to 60 min at 37 degrees C. This kinetic pattern is similar to that observed after calcium ionophore A23187 stimulation of these cells. The results suggest that PNA is capable of selectively activating the 5-lipoxygenation of arachidonic acid without affecting beta-hexosaminidase secretion. Apparently, separate biochemical events may serve to mobilize each class of mediators.  相似文献   

19.
Therapeutic options to control respiratory syncytial virus (RSV) are limited, thus development of new therapeutics is high priority. Previous studies with a monoclonal antibody (mAb) reactive to an epitope proximal to the central conserved region (CCR) of RSV G protein (mAb 131-2G) showed therapeutic efficacy for reducing pulmonary inflammation RSV infection in BALB/c mice. Here, we show a protective effect in RSV-infected mice therapeutically treated with a mAb (130-6D) reactive to an epitope within the CCR of G protein, while treatment with a mAb specific for a carboxyl G protein epitope had no effect. Combined treatment with mAbs 130-6D and 131-2G significantly decreased RSV-associated pulmonary inflammation compared to either antibody alone. The results suggest that anti-RSV G protein mAbs that react at or near the CCR and can block RSV G protein-mediated activities are effective at preventing RSV disease and may be an effective strategy for RSV therapeutic treatment.  相似文献   

20.
Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Although anti-RSV Ab prophylaxis has greatly reduced infant mortality in the United States, there is currently no vaccine or effective antiviral therapy. RSV fusion (F) protein activates cells through TLR4. Two single nucleotide polymorphisms (SNPs) encoding Asp299Gly and Thr399Ile substitutions in the TLR4 ectodomain were previously associated with TLR4 hyporesponsiveness and increased susceptibility to bacterial infection. Prevalence of these SNPs was analyzed in a case series of 105 DNA samples extracted from archived nasal lavage samples from high-risk infants/young children with confirmed RSV disease who participated in two seminal clinical trials for anti-RSV prophylaxis. Frequencies of TLR4 SNPs in the case series were compared with those of literature controls, healthy adults, infants, and young children who presented with symptoms of respiratory infections (but not preselected for high risk for RSV). Both SNPs were highly associated with symptomatic RSV disease in this largely premature population (p < 0.0001), with 89.5% and 87.6% of cases being heterozygous for Asp299Gly and Thr399Ile polymorphisms versus published control frequencies of 10.5% and 6.5%, respectively. The other two control groups had similarly low frequencies. Our data suggest that heterozygosity of these two extracellular TLR4 polymorphisms is highly associated with symptomatic RSV disease in high-risk infants and support a dual role for TLR4 SNPs in prematurity and increased susceptibility to RSV not revealed by analysis of either alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号