首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aneuploid cancers exhibit a wide spectrum of clinical aggressiveness, possibly because of varying chromosome compositions. To test this, karyotypes from the diploid CCD-34Lu fibroblast and the aneuploid A549 and SUIT-2 cancer lines underwent fluorescence in situ hybridization (FISH) and DAPI counterstaining. The number of DAPI-stained and FISH-identified chromosomes, 1-22, X,Y, as well as structural abnormalities, were counted and compared using the chi(2), Mann-Whitney rank sum test and the Levene's equality of variance. Virtually all of the evaluable diploid CCD-34Lu karyotypes had 46 chromosomes with two normal-appearing homologues. The aneuploid chromosome numbers per karyotype were highly variable, averaging 62 and 72 for the A549 and SUIT-2 lines, respectively. However, the A549 chromosome numbers were more narrowly distributed than the SUIT-2 karyotype chromosome numbers. Furthermore, 25% of the A549 chromosomes had structural abnormalities compared to only 7% of the SUIT-2 chromosomes. The chromosomal compositions of the aneuploid A549 and SUIT-2 cancer lines are widely divergent, suggesting that diverse genetic alterations, rather than chance, may govern the chromosome makeups of aneuploid cancers.  相似文献   

2.
Studies with DNA flow cytometry (FCM) have shown that DNA contents of aneuploid tumour clones vary in a wide range. The aim of this study was to analyse whether homologous chromosomal changes exist despite the individual differences that may be of general relevance for the development of gross aneuploidy in squamous cell carcinomas of the head and neck. Fluorescence in situ hybridization (FISH) with 13 centromere-specific DNA probes was applied to 3 diploid and 11 aneuploid tumours with DNA indices ranging between 0.8 and 2.2. Disomic and monosomic cell populations were prevalent findings in DNA-diploid tumours. Polysomies were common in aneuploid tumours. Different degrees of aneusomy for identical chromosomes were recurrent features in aneuploid tumours. FISH signal heterogeneity was identified for all chromosomes. The mean number of aneusomic cell populations identified for DNA-aneuploid tumours ranged between 1.6 for chromosome 17 and 3.1 for chromosome 3. Inconsistencies between FISH and FCM data may indicate that centromere-specific DNA probes identify gains and losses of marker DNA due to complex karyotypic rearrangements rather than absolute changes in chromosome numbers. Overall, there was no evidence of the critical involvement of particular chromosomes in the development of different DNA contents.  相似文献   

3.
Repeated DNAs from the constitutive heterochromatin of human chromosomes 1 and 18 were used as probes in nonradioactive in situ hybridization experiments to define specific numerical and structural chromosome aberrations in three human glioma cell lines and one neuroblastoma cell line. The number of spots detected in interphase nuclei of these tumor cell lines and in normal diploid nuclei correlated well with metaphase counts of chromosomes specifically labeled by in situ hybridization. Rapid and reliable assessments of aneuploid chromosome numbers in tumor lines in double hybridization experiments were achieved, and rare cells with bizarre phenotype and chromosome constitution could be evaluated in a given tumor cell population. Even with suboptimal or rare chromosome spreads specific chromosome aberrations were delineated. As more extensive probe sets become available this approach will become increasingly powerful for uncovering various genetic alterations and their progression in tumor cells.  相似文献   

4.
BACKGROUND: DNA hypodiploidy is a unique and rare finding associated with aggressive behavior in solid tumors. Identifying the chromosomal changes underlying this feature may provide important information on the development and progression of these neoplasms. METHODS: Fluorescence in situ hybridization analysis using alpha-satellite probes for nine autosomes and the two sex chromosomes was performed on interphase cells from 27 solid tumors which had been shown to be DNA hypodiploid by flow cytometry. The chromosomal abnormalities were correlated with the DNA index and tumor subtypes. RESULTS: The data show mutually exclusive loss of certain chromosomes and compensatory gain of other chromosomes in different tumors. The net loss was slightly more than the net gain for the chromosomes tested. Polysomy of chromosome 7 and monosomy of chromosomes 17, X and loss Y were found in most tumors. Significant differential loss of chromosomes 6,10, and 12 among DNA hypodiploid breast, kidney and lung carcinomas was noted. CONCLUSIONS: Our study shows (i) gain of chromosome 7 and loss chromosome 17 in most DNA hypodiploid tumors, (ii) specific chromosomal loss was noted in breast and renal cell carcinomas, and (iii) that different mechanisms for DNA hypodiploid and hyperdiploid development may exist.  相似文献   

5.
OBJECTIVE: Although information on the cytogenetic characteristics of meningioma tumors has accumulated progressively over the past few decades, information on the genetic heterogeneity of meningiomas is still scanty. The aim of the present study was to analyze by interphase fluorescence in situ hybridization (FISH) the incidence of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y in a group of 70 consecutive meningioma tumors. Another goal was to establish the potential associations among the altered chromosomes, as a way to assess both intertumoral and intratumoral heterogeneity. METHODS: For the purpose of the study, 70 patients diagnosed with meningioma were analyzed. Interphase FISH for the detection of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y was applied to fresh tumor samples from each of the patients studied. RESULTS: The overall incidence of numerical abnormalities was 76%. Chromosome Y in males and chromosome 22 in the whole series were the most common abnormalities (46% and 61%, respectively). Despite the finding that monosomy of chromosome 22/22q(-) deletions are the most frequent individual abnormality (53%), we have observed that chromosome gains are significantly more common than chromosome losses (60% versus 40%). Chromosome gains corresponded to abnormalities of chromosomes 1 (27%), 9 (25%), 10 (23%), 11 (22%), 14 (33%), 15 (22%), 17 (23%), and X in females (35%) and males (23%) whereas chromosome losses apart from chromosome 22 frequently involved chromosomes 14 (19%), X in males (23%), and Y in males (32%). Although an association was found among most gained chromosomes on one side and chromosome losses on the other side, different association patterns were observed. Furthermore, in the latter group, monosomy 22/22q(-) was associated with monosomy X in females and monosomy 14/14q(-) was associated with nulisomy Y in males. In addition, chromosome losses usually involved a large proportion of the tumor cells whereas chromosome gains were restricted to small tumor cell clones, including tetraploid cells. CONCLUSIONS: Our results show that meningiomas are genetically heterogeneous tumors that display different patterns of numerical chromosome changes, as assessed by interphase FISH.  相似文献   

6.
Following the observation detected in a previous study that X chromosome monosomy in Turner's syndrome genotypes was associated with a sporadic loss and/or gain of other chromosomes, we studied here whether this instability is a consistent finding in constitutional autosomal trisomies. We used PHA-stimulated lymphocytes derived from 14 patients (10 patients with trisomy 21, 2 with trisomy 18, and 2 with trisomy 13). Fourteen healthy controls were compared. Fluorescence in situ hybridization, applied at interphase cells, was used to evaluate the level of aneuploidy for 3 randomly selected chromosomes (autosomes 8, 15, and 16) in each sample. For each tested chromosome, our results showed a significantly higher level of aneuploid cells in the samples from the patients than in those from controls, with no difference between the patient groups. The mean level of aneuploid cells (percentage) for all 3 tested autosomes was almost twice as high in the patient samples as in the control samples. The aneuploidy level was mainly due to monosomy, which was significantly higher in the samples from the patients than in those from controls for each one of the tested chromosomes, with no difference between the patient groups. The mean level of monosomic cells (percentage) for all 3 tested chromosomes was almost twice as high in the patient samples as in the control samples. Our study shows that various constitutional autosomal trisomies are associated with an increased frequency of non-chromosome specific aneuploidy and is a continuation of the previous study documenting sporadic aneuploidy in Turner's sample cells. It is possible that primary aneuploid cells destabilize their own genome resulting in variable aneuploidy of other chromosomes. It is also possible that one or several common factor(s) is/are involved in both constitutional and sporadic aneuploidy.  相似文献   

7.
Endometriosis affects 10–15% of women of reproductive age and is a common cause of infertility and pelvic pain. Although endometriosis is characterized by abnormal growth or turn-over of cells, the genetic changes involved remain unclear. We employed a multi-color fluorescence in situ hybridization (FISH) strategy to determine the incidence of somatic chromosomal numeric alterations in severe/late stage endometriosis. Using alpha-satellite sequence-specific DNA probes for chromosomes 7, 8, 11, 12, 16, 17, and 18, simultaneous two- and three-color FISH were performed to evaluate the frequency of monosomic, disomic, and trisomic cells in normal control and endometriotic tissue specimens. In one of four endometriosis samples studied, a significantly higher frequency of monosomy for chromosome 17 (14.8%, χ2 4 = 53.3, P < 0.0001) and 16 (8.8%, χ2 4 = 11.4, P < 0.05) was observed. An increased number of cells with chromosome 11 trisomy (14.8%, χ2 4 = 96.2, P < 0.0001) were detected in a second case. In a third case, a distinct colony of nuclei with chromosome 16 monosomy (14.1%, χ2 4 = 21.39, P < 0.005) was detected. Acquired chromosome-specific aneuploidy may be involved in endometriosis, reflecting clonal expansion of chromosomally abnormal cells. That candidate tumor suppressor genes and oncogenes have been mapped to chromosomes 11, 16, and 17 suggests that chromosomal loss or gain plays a role in the development and/or progression of endometriosis. Received: 27 December 1997 / Accepted: 14 April 1997  相似文献   

8.
The protozoan parasite Leishmania is generally considered to be diploid, although a few chromosomes have been described as aneuploid. Using fluorescence in situ hybridization (FISH), we determined the number of homologous chromosomes per individual cell in L. major (i) during interphase and (ii) during mitosis. We show that, in Leishmania, aneuploidy appears to be the rule, as it affects all the chromosomes that we studied. Moreover, every chromosome was observed in at least two ploidy states, among monosomic, disomic or trisomic, in the cell population. This variable chromosomal ploidy among individual cells generates intra-strain heterogeneity, here precisely chromosomal mosaicism. We also show that this mosaicism, hence chromosome ploidy distribution, is variable among clones and strains. Finally, when we examined dividing nuclei, we found a surprisingly high rate of asymmetric chromosome allotments, showing that the transmission of genetic material during mitosis is highly unstable in this 'divergent' eukaryote: this leads to continual generation of chromosomal mosaicism. Using these results, we propose a model for the occurrence and persistence of this mosaicism. We discuss the implications of this additional unique feature of Leishmania for its biology and genetics, in particular as a novel genetic mechanism to generate phenotypic variability from genomic plasticity.  相似文献   

9.
Summary The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed.  相似文献   

10.
11.
Cytogenetic study of 11 cases of colorectal carcinoma was performed after R-banding. In all instances, there was a rearrangement involving chromosome 17 in its juxtacentromeric region, leading to the loss of its short arm. There was also a relative lack of chromosome 18, unrelated to a rearrangement of this chromosome in all but one case. Other anomalies, involving chromosomes 1 and 8 among others, were frequently but not systematically observed. The consistent lack of chromosome 18 and of the short arm of chromosome 17, leading to a complete or partial monosomy of these chromosomes in near diploid cells suggests that the passage to the hemizygous status of recessive genes carried by these chromosomes may play an important role in the development of colorectal carcinoma.  相似文献   

12.
Is there selection against aneuploid sperm during spermatogenesis and fertilization? To address this question, we used male mice doubly heterozygous for the Robertsonian (Rb) translocations Rb(6. 16)24Lub and Rb(16.17)7Bnr, which produce high levels of sperm aneuploid for chromosome 16, the mouse counterpart of human chromosome 21. The frequencies of aneuploid male gametes before and after fertilization were compared by analyzing approximately 500 meiosis II spermatocytes and approximately 500 first-cleavage zygotes using fluorescence in situ hybridization with a DNA painting probe mixture containing three biotin-labeled probes specific for chromosomes 8, 16, and 17 plus a digoxigenin-labeled probe specific for chromosome Y. Hyperhaploidy for chromosome 16 occurred in 20.0% of spermatocytes and in 21.8% of zygotes. Hypohaploidy for chromosome 16 occurred in 17.0% and 16.7% of spermatocytes and zygotes, respectively. In addition, there was no preferential association between chromosome 16 aneuploidy and either of the sex chromosomes, nor was there an elevation in aneuploidy for chromosomes not involved in the Rb translocations. These findings provide direct evidence that there is no selection against aneuploid sperm during spermiogenesis, fertilization, and the first cell cycle of zygotic development.  相似文献   

13.
OBJECTIVE: To analyze chromosomal abnormalities in macroscopically normal urothelium in patients with bladder pT1 and pT2a urothelial carcinoma and correlate the changes with histologic features. STUDY DESIGN: Cytologic touch preparations of the tumors and of the adjacent and distant urothelium were obtained from 8 bladders with urothelial carcinoma. Fluorescence in situ hybridization (FISH) was used to detect abnormalities of chromosomes 3, 7, 9 and 17 and of the 9p21 locus. RESULTS: The macroscopically normal urothelium adjacent to and distantfrom neoplastic foci was either normal looking microscopically or showed histologic changes ranging from hyperplasia to dysplasia and carcinoma in situ. FISH analysis detected chromosome gains and 9p21 deletion similar to those present in the urothelial carcinoma even though the percentage of altered nuclei was lower, especially in hyperplasia. The microscopically normal urothelium showed minor abnormalities in terms of gain for all the chromosomes investigated. CONCLUSION: Even though urothelium looks normal from the macroscopic point of view, it frequently harbors histologic changes and chromosomal abnormalities. These findings are of clinical significance since they might represent genetic alterations involved in recurrence and/or progression of urothelial carcinoma.  相似文献   

14.
Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicism may contribute significantly to both pregnancy complications and spontaneous fetal loss.  相似文献   

15.
It is known that up to 50% spontaneous abortions (SA) in the first trimester of pregnancy are associated with chromosomal abnormalities. We studied mosaic forms of chromosomal abnormalities in 650 SA specimens using interphase MFISH and DNA probes for chromosomes 1, 9, 13/21, 14/22, 15, 16, 18, X, and Y. Numerical chromosomal abnormalities were discovered in 58.2% (378 cases). They contained combined chromosomal abnormalities (aneuploidy of several chromosomes or aneuploidy in combination with polyploidy in the same specimen) in 7.7% (29 cases) or 4.5% of the entire SA sample; autosomal trisomy, in 45% (18.2% in chromosome 16, 8.9% in chromosomes 14/22, 7.9% in chromosomes 13/21, 3.1% in chromosome 18, and 1.4% in chromosome 9). Chromosome X aneuploidy was found in 27% cases, among which 9.6% represented chromosome X monosomy. Polyploidy was observed in 22.9% cases. In 5.1% cases, we observed mosaic form of autosomal monosomy. Among the SA cases with chromosomal abnormalities mosaicism was observed in 50.3% (∼ 25% of the entire SA sample). The results of the present study indicate that significant amount of chromosomal abnormalities in SA cells are associated with disturbances in mitotic chromosome separation, which represents the most common cause of intrauterine fetal death. It was also shown that original collection of DNA probes and the technique of interphase MFISH could be useful for detection of chromosomal mosaicism in prenatal cell specimens.  相似文献   

16.
This study describes a method for defining mosaic aneuploidy by interphase cytogenetics based on statistical limits established from control specimens. Fluorescence in situ hybridization (FISH) has been used to detect the number of copies of specific chromosomes in interphase nuclei from placental tissues of diploid controls and mosaic placentas. FISH was performed using probes D7Z1/D7Z2, D9Z1, D10Z1, and D18Z1, all purchased from Oncor, Inc. Statistical analysis of data obtained from diploid controls was used to determine the one-sided upper reference limit and corresponding 95% confidence interval for the proportion of cells with one and three signals for each of the probes used. The one-sided upper reference limits established the lower levels of monosomy and trisomy detectable using each of the four probes. These statistical parameters were then used to interpret the results obtained by FISH applied to the study of term placentas for the confirmation of prenatally diagnosed chromosomal mosaicism.  相似文献   

17.
The positions of chromosomes 18 and X fluorescence in situ hybridization signals were analyzed in blastomeres generated from human in vitro fertilization 3- to 4-day-old embryos after preimplantation screening of aneuploidy of chromosomes 13, 16, 18, 21, 22, X, and Y. Fluorescent signal localization compared with a three-dimensional sphere model of random signal distribution revealed significant differences, providing evidence of peripheral localization of chromosome 18 in aneuploid (p=0.0013) and aneuploid/euploid blastomeres (p=0.0011). No differences were found in localization of chromosome 18 in euploid and in chromosome X in euploid and aneuploid blastomeres.  相似文献   

18.
DNA flow cytometry was used to study the presence of DNA aneuploid cell populations in macroscopically normal glandular tissue in mastectomy specimens from 30 patients with breast cancer. In the 13 patients with a DNA diploid primary tumor, no DNA aneuploidy could be found in any of the 39 distant specimens assessed. However, DNA aneuploid cell populations were demonstrated in four of the 17 (23%) patients with a primary DNA aneuploid carcinoma and in seven out of 54 (13%) distant tissue samples (P = 0.02). In all cases the DNA index of the DNA aneuploid cells found in the distant samples was identical to that of the primary tumor. The replicate aneuploid DNA indices and histologic controls taken in parallel very strongly suggest that these distant DNA aneuploid cell populations are metastases.  相似文献   

19.
Multiple chromosomal imbalances have been identified in breast cancer using comparative genomic hybridization (CGH). Their association with the primary tumors' potential for building distant metastases is unknown. In this study we have investigated 39 invasive breast carcinomas with a mean follow-up period of 99 months (max. 193 months) by CGH to determine the prognostic value of chromosomal gains and losses.The mean number of chromosomal imbalances per tumor was 6.5+/-0.7 (range 2 to 18). The most frequent alterations identified in more than 1/3 of cases were gains on chromosomes 11q13, 12q24, 16, 17, and 20q, and losses on 2q and 13q. A significantly different frequency of chromosomal aberrations (p相似文献   

20.
DNA index (DI) measurements and chromosomal analysis of 42 transitional cell carcinomas were done after mechanical and enzymatical disaggregation of the tumor specimens. The results obtained with these different disaggregation techniques were compared in the 33 cases (79%) that showed recognizable chromosomes. The enzymatically obtained cell suspensions could not be used for chromosomal analysis after short-term culture of 24 hours. In four cases, the DI after enzymatical treatment could not be estimated. In most cases, the DI obtained from the tumor cells was similar for both aggregation techniques, with the exception of four cases of enzymatically treated cell suspensions in which the DI could not be estimated. The average DI of the aneuploid tumors was 13% higher than the corresponding chromosome count. In 19% of the aneuploid tumors the proportion of aneuploid cells could not be measured after enzymatical treatment. In the remaining suspensions the proportion of diploid cells was higher after enzymatical disaggregation than after mechanical treatment. It is concluded that for flow cytometric and direct chromosomal analysis of bladder tumors, the mechanical disaggregation technique is most suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号