首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two‐hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N‐terminal CIP2A fragment (amino acids 1–560) at 3.0 Å resolution, and by subsequent structure‐based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N‐terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure–function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.  相似文献   

2.
3.
In most mammalian cells, the primary cilium is a microtubule‐enriched protrusion of the plasma membrane and acts as a key coordinator of signaling pathways during development and tissue homeostasis. The primary cilium is generated from the basal body, and cancerous inhibitor of protein phosphatase 2A (CIP2A), the overexpression of which stabilizes c‐MYC to support the malignant growth of tumor cells, is localized in the centrosome. Here, we show that CIP2A overexpression induces primary cilia disassembly through the activation of Aurora A kinase, and CIP2A depletion increases ciliated cells and cilia length in retinal pigment epithelium (RPE1) cells. CIP2A depletion also shifts metabolism toward the glycolytic pathway by altering the expression of metabolic genes related to glycolysis. However, glycolytic activation in CIP2A‐depleted cells does not depend on cilia assembly, even though enhanced cilia assembly alone activates glycolytic metabolism. Collectively, these data suggest that CIP2A promotes primary cilia disassembly and that CIP2A depletion induces metabolic reprogramming independent of primary cilia.  相似文献   

4.
5.
6.
7.
We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD.  相似文献   

8.
9.
10.
Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma–cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial–mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.  相似文献   

11.
Sugano N  Ito K  Murai S 《FEBS letters》1999,447(2-3):274-276
Several clinical studies have shown that cyclosporin A (CsA) is effective for treating a variety of chronic inflammatory and autoimmune diseases. Because reactive oxygen species are believed to play a key role in the development of these diseases, causing cell apoptosis, we investigated whether CsA inhibits H2O2-induced apoptosis. Preincubation of human fibroblasts with CsA dose-dependently decreased H2O2-induced apoptosis. Apoptosis suppression by CsA was correlated with the prevention of mitochondrial dysfunction and caspase activation. Thus, our results suggest that the inhibition of apoptosis by CsA may at least partly contribute to the anti-inflammatory effect of CsA.  相似文献   

12.
Highlights? PP2A colocalizes with Rec8 in mouse oocyte meiosis II ? The PP2A inhibitor I2PP2A is expressed in ascidian and mouse oocyte meiosis ? I2PP2A colocalizes with PP2A in meiosis II, independently of bipolar attachment ? I2PP2A is required for sister separation in mouse oocyte meiosis II  相似文献   

13.
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3′,5′-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.  相似文献   

14.
The cancerous inhibitor of protein phosphatase 2A (CIP2A) increases the migration and metastasis of various cancer cells. Overexpression of CIP2A has been shown to increase the proliferation of MDA-MB-231 cells. We thus assessed whether CIP2A expression is associated with sensitivity to doxorubicin. MDA-MB-231 cells showed an increase in CIP2A expression after treatment with doxorubicin, while MCF-7 cells showed a decrease in CIP2A expression. The overexpression of CIP2A in MCF-7 cells overcame the inhibition of cell proliferation in response to doxorubicin treatment. CIP2A expression was not affected by wild-type or mutant p53. However, mutant p53 blocked doxorubicin-mediated CIP2A down-regulation in HCT116 cells. As a regulation mechanism of doxorubicin-mediated CIP2A expression, we showed that phosphorylated Akt was involved in the suppression of CIP2A expression.  相似文献   

15.
《Autophagy》2013,9(2):386-387
Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.  相似文献   

16.
17.
Our previous studies have shown that methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane synthetic triterpenoid induces apoptosis in prostate cancer cells by inhibiting the Akt/NF-κB/mTOR signaling cascade; however, the mechanism by which CDDO-Me inhibits Akt/NF-κB/mTOR signaling has remained undetermined. Present studies show that Akt plays a critical role in the response of prostate cancer cells to CDDO-Me. Silencing of Akt sensitized PC-3 cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. Evaluation of the effect of CDDO-Me on Akt which lies upstream of NF-κB and mTOR showed that CDDO-Me directly inhibits the Akt kinase activity in cell-free kinase activity assay and in vivo without modulating the activity of PDK1, the upstream kinase that phosphorylates and activates Akt. The inhibition of Akt activity resulted in inhibition of phosphorylation/inactivation of proapoptotic procaspase-9, Bad and Foxo3a. Further, inhibition of p-Akt by CDDO-Me was not attributable to an increase in the activity of protein phosphatase 2A (PP2A) or PH domain/leucine-rich repeat protein phosphatase1 (PHLPP1) both of which dephosphorylate p-Akt. These findings show that Akt is a direct target of CDDO-Me in the Akt/NF-κB/mTOR prosurvival signaling axis.  相似文献   

18.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

19.
Protein phosphatase 2A (PP2A) is a ubiquitous phosphatase found in many eukaryotic cell types and is involved in regulating a number of intracellular signalling pathways. Its activity, in turn, is regulated through covalent modification, involving phosphorylation and methylation reactions. The effect of phosphorylation on the activity of the protein is well known, but the effects of methylation have only recently been documented and the mechanistic details of methylation are lacking. Methylation, which occurs on the catalytic subunit of PP2A, is catalysed by PP2A methyltransferase (PP2Amt). Here, we present a method for the large-scale purification of human PP2Amt using an Escherichia coli host, coexpressing the chaperonins GroEL and GroES. Purified PP2Amt was identified by peptide mass mapping using MALD-MS and peptide sequencing using ESI-LC-MS/MS. The CD spectrum indicated that purified PP2Amt was folded, with about one-third of the protein adopting an alpha-helical conformation. Analytical gel filtration estimated the molecular weight to be 34kDa, equivalent to the monomeric form of the protein. Further CD analysis showed that in the presence and absence of the ligand S-adenosylhomocysteine, the thermal denaturation profiles were biphasic. However, the transition midpoints shifted to a higher temperature in the presence of ligand, indicating stabilisation of ligand-bound PP2Amt compared to the apo-form. We also report on the progress made in determining the structure of PP2Amt, using both X-ray crystallography and NMR spectroscopy.  相似文献   

20.
《Molecular cell》2021,81(23):4924-4941.e10
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号