首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transitions of aqueous dispersions of a number of synthetic phosphatidylethanolamines containing linear saturated, branched chain, and alicyclic fatty acyl chains of varying length were studied by differential scanning calorimetry, 31P nuclear magnetic resonance spectroscopy, and X-ray diffraction. For any given homologous series of phosphatidylethanolamines containing a single chemical class of fatty acids, the lamellar gel/liquid-crystalline phase transition temperature increases and the lamellar liquid-crystalline/reversed hexagonal phase transition temperature decreases with increases in hydrocarbon chain length. For a series of phosphatidylethanolamines of the same hydrocarbon chain length but with different chemical structures, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary markedly and in the same direction. In particular, at comparable effective hydrocarbon chain lengths, both the lamellar gel/liquid-crystalline and the lamellar liquid-crystalline/reversed hexagonal phase transition temperatures vary in parallel, such that the temperature difference between these two phase transitions is nearly constant. Moreover, at comparable effective acyl chain lengths, the d spacings of the lamellar liquid-crystalline phases and of the inverted hexagonal phases are all similar, implying that the thickness of the phosphatidylethanolamine bilayers at the onset of the lamellar liquid-crystalline/reversed hexagonal phase transition and the diameter of the water-filled cylinders formed at the completion of this phase transition are comparable and independent of the chemical structure of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-to-gel mid-transition temperature of the lamellar phase assigned to phosphatidylserine is decreased from 27 to 24 degrees C in the presence of calcium. Addition of sphingomyelin to phosphatidylethanolamine/phosphatidylserine prevents phase separation of the hexagonal H(II) phase of phosphatidylethanolamine but the ternary mixture phase separates into two lamellar phases of periodcity 6.2 and 5.6 nm, respectively. The 6.2-nm periodicity is assigned to the gel phase enriched in sphingomyelin of molecular species comprising predominantly long saturated hydrocarbon chains because it undergoes a gel-to-fluid phase transition above 40 degrees C. The coexisting fluid phase we assign to phosphatidylethanolamine and phosphatidylserine and low melting point molecular species of sphingomyelin which suppresses the tendency of phosphatidylethanolamine to phase-separate into hexagonal H(II) structure. There is evidence for considerable hysteresis in the separation of lamellar fluid and gel phases during cooling. The addition of cholesterol prevents phase separation of the gel phase of high melting point sphingomyelin in mixtures with phosphatidylserine and phosphatidylethanolamine. In the quaternary mixture the lamellar fluid phase, however, is phase separated into two lamellar phases of periodicities of 6.3 and 5.6 nm (20 degrees C), respectively. The lamellar phase of periodicity 5.6 nm is assigned to a phase enriched in aminoglycerophospholipids and the periodicity 6.3 nm to a liquid-ordered phase formed from cholesterol and high melting point molecular species of sphingomyelin characterized previously by ESR. Substituting 7-dehydrocholesterol for cholesterol did not result in evidence for lamellar phase separation in the mixture within the temperature range 20-40 degrees C. The specificity of cholesterol in creation of liquid-ordered lamellar phase is inferred.  相似文献   

3.
The effect of phase behaviour (hexagonal II phase and lamellar phase) on the peroxidation of membrane phospholipids has been investigated in dilinoleoyl phosphatidylcholine (DLPC)/dilinoleoyl phosphatidylethanolamine (DLPE) aqueous dispersions. Peroxidation was initiated with a water-soluble radical inducer 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPN). The phospholipid morphology was monitored by 31P-nuclear magnetic resonance (NMR). Phospholipid hydroperoxides (PCOOH and PEOOH) were determined by chemiluminescence high-performance liquid chromatography (CL-HPLC). In pH-induced phase transition systems, DLPE in the bilayer state was much less oxidized than in the hexagonal II state. In composition-induced phase transition systems, the formation of total hydroperoxides and the consumption of alpha-tocopherol in the hexagonal II phase were greater than in the bilayer phase. These data suggest that the hexagonal II phase is more sensitive to hydroperoxidation than the bilayer phase in phospholipid aqueous dispersions.  相似文献   

4.
The transepithelial resistance of confluent epithelial cell monolayers was monitored to investigate the influence of basic amino acids, Ca2+, protamine and protons on tight junction electrical resistance. In an accompanying paper we investigated the effect of these substances on the lamellar/hexagonal II phase transition in reconstituted phospholipid membranes containing phosphatidylserine and phosphatidylethanolamine. We conclude that the permeability of tight junctions may be described by a lipid phase equilibrium where the lamellar phase corresponds to an open state and the hexagonal lipid phase to the closed state of the cell contact. This dynamic lipid model is well suited to describe the morphological as well as functional properties of the tight junctions.  相似文献   

5.
6.
The effect of alpha-tocopherol on the structure and phase behaviour of mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine has been examined by synchrotron X-ray diffraction. Equimolar mixtures of dioleoylphosphatidylethanolamine:dioleoylphosphatidylcholine and dimyristoylphosphatidylcholine:dioleoylphosphatidylethanolamine did not show evidence of phase separation of an inverted hexagonal structure typical of alpha-tocopherol and phosphatidylethanolamine from lamellar phase. Mixed dispersions of dioleoyl derivatives of phosphatidylethanolamine:phosphatidylcholine (3:1) form a typical miscible gel phase at low temperatures but which phase separates into lamellar liquid-crystal and inverted hexagonal phases at temperatures greater than 65 degrees C. The presence of 1, 2 or 5 mol% alpha-tocopherol caused a decrease in the temperature at which the inverted hexagonal phase appears. Phase separation of non-lamellar phase from lamellar gel phase can be detected in the presence of 7.5 and 10 mol% alpha-tocopherol, indicating a limited capacity of the phosphatidylcholine to incorporate alpha-tocopherol into the lamellar domain. A partial phase diagram of the ternary mixture has been constructed from the X-ray scattering data. It was concluded that there is no preferential interaction of alpha-tocopherol with phosphatidylethanolamine in mixed aqueous dispersions containing phosphatidylcholines.  相似文献   

7.
We have studied the influence of four antimicrobial peptides of different secondary and ternary structure - melittin (Mel), protegrin-1 (PG-1), peptidyl-glycylleucine-carboxyamide (PGLa), and gramicidin S (GS) - on the lamellar-to-nonlamellar transition of palmitoyloleoyl phosphatidylethanolamine (POPE) applying differential scanning calorimetry and small-angle X-ray diffraction. None of the peptides studied led to the formation of an inverted hexagonal phase observed for pure POPE at high temperatures. Instead either cubic or lamellar phases were stabilized to different degrees. GS was most effective in inducing a cubic phase, whereas Mel fully stabilized the lamellar phase. The behavior of POPE in the presence of PG-1 and PGLa was intermediate to GS and Mel. In addition to the known role of membrane elasticity we propose two mechanisms, which cause stabilization of the lamellar phase: electrostatic repulsion and lipid/peptide pore formation. Both mechanisms prevent transmembrane contact required to form either an inverted hexagonal phase or fusion pores, as precursors of the cubic phase.  相似文献   

8.
We demonstrate for the first time that major structural changes are imposed on various phospholipid bilayers by diacylglycerol, a product of phosphatidylinositol metabolism. By 5 mole percent in phosphatidylethanolamine a lamellar to hexagonal transition starts that is complete at 10 mole percent. At 30 mole percent it causes the same transition in phosphatidylcholine and forms a cubic phase at 80 mole percent. Diacylglycerol disorders the phosphatidylserine lamellar phase. We view the formation of the non-lamellar phases as diagnostic of the destabilizations that diacylglycerol can cause in membranes. We suggest how DAG may act both in its specific activation of membrane enzymes and in inducing membrane fusion.  相似文献   

9.
用小角 X 射线散射(SAXS)法研究了苯、丙酮对磷脂酰乙醇胺(PE)液晶态结构的影响.实验结果表明:苯能使 PE 液晶态先从片层相解束变成立方相.然后再诱导立方相变成六角形 H相,最后促使六角形 H相解束变成液态.在解束相变中出现了红移现象.丙酮也有使 PE 液晶态先从片层相解束变成立方相,在解束相变中也出现红移现象,但再诱导立方相变成六角形 H相之后,不是促使其变成液相,而是将其稳定在六角形 H相.  相似文献   

10.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

11.
The steady-state anisotropy of trimethylammonium diphenylhexatriene fluorescence has been used to monitor the thermotropic lamellar to HII hexagonal phase transition in an unsaturated phosphatidylethanolamine. The transition is observed in lipid aggregates when they are heated above the transition temperature Th, as well as in diluted liposomes after aggregation above Th. Changes in fluorescence anisotropy are not observed with Ca(++)-induced fusion of phosphatidylserine vesicles, a process not involving hexagonal phase formation.  相似文献   

12.
J J Cheetham  E Wachtel  D Bach  R M Epand 《Biochemistry》1989,28(22):8928-8934
The phase behavior of mixtures of cholesterol or epicholesterol with phosphatidylethanolamine was studied by differential scanning calorimetry and by X-ray diffraction. Discrete domains of cholesterol are detected by X-ray diffraction in the L alpha phase of phosphatidylethanolamine from egg yolk and synthetic dielaidoylphosphatidylethanolamine beginning at mole fractions of 0.35-0.4 cholesterol. Separate domains of crystalline epicholesterol can also be detected in the L alpha phase of dielaidoylphosphatidylethanolamine by X-ray diffraction at as little as 0.16 mole fraction of epicholesterol. This is a result of poor miscibility of the epicholesterol with dielaidoylphosphatidylethanolamine. Epicholesterol does not alter the L beta----L alpha transition or bilayer spacing. Epicholesterol also has little effect on the diameter of the cylinders in the hexagonal phase. Formation of the inverted hexagonal phase is facilitated by addition of small amounts of cholesterol (mole fraction less than 0.2) in both egg phosphatidylethanolamine and dielaidoylphosphatidylethanolamine. However, at higher mole fractions of cholesterol, the stability of the liquid-crystalline phase is found to increase markedly for dielaidoylphosphatidylethanolamine but not for egg phosphatidylethanolamine, indicating the importance of the structure of the acyl chains in controlling the relative stability of the lamellar and nonlamellar phases in these systems. In contrast to cholesterol, epicholesterol markedly lowers the L alpha----HII phase transition temperature at low mole fraction of sterol. This result demonstrates the importance of the orientation and motional properties of an additive in determining the L alpha----HII transition temperature.  相似文献   

13.
The thermotropic behaviour of egg yolk phosphatidylethanolamine dispersions in excess aqueous phase has been investigated by spin label electron spin resonance spectroscopy and differential thermal analysis. Phosphatidylethanolamine isomers spin-labelled at six different positions along the acyl chain, and steroid spin labels, indicate both gel-fluid lamellar and lamellar-reverse hexagonal (HII) phase transitions, in agreement with complementary calorimetric studies. Analysis of spin label data shows that the transition to the HII phase is accompanied by an increase in conformational freedom of the acyl chain, more pronounced towards the methyl terminus, and representing an increase in the population of gauche isomers which can only be accommodated by a transition to the non-bilayer phase. Raising the bulk pH to, and above, pH 8.5 results in stabilisation of the bilayer phase and no transition to the HII phase is observed. The phosphatidylethanolamine spin labels also indicate a polarity profile which is characteristic of each phase.  相似文献   

14.
Pressure is found to destabilize the non-bilayer phase with respect to the bilayer in a model lipid system. The lamellar to inverted hexagonal (H11) phase transition of aqueous egg phosphatidylethanolamine is shifted to higher temperatures by hydrostatic pressure. The slope of the increase in transition temperature is constant to beyond 300 bar, and is greater than that seen for other lipid phase transitions. This behavior is consistent with the hypothesis that increasing chain disorder drives the conversion from the bilayer into the hexagonal phase. If this non-bilayer lipid phase is an intermediate in membrane fusion, then pressure should inhibit the process. This may explain the inhibition of chemical transmission at neural synapses by pressure.  相似文献   

15.
The temperature dependence of the fluorescence anisotropy of polar head group labeled fluorophores (i.e., N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine or N-(lissamine rhodamine B sulfonyl)dipalmitoyl-L-alpha-phosphatidylethanol- amine) incorporated into multiple phosphatidylethanolamine molecular species was parabolic, possessing minima (dr/dT = 0) that precisely correlated with the respective lamellar (L alpha) to hexagonal (HII) phase transition temperature of each species. The parabolic alterations in the thermotropic behavior of these fluorophores were due to increased motional constraints in the polar head group region during heating (dr/dT greater than 0), because significant alterations in the fluorescence lifetimes of these probes during the phase transition did not occur. The sensitivity inherent in identification of peak minima was exploited to determine the lamellar to hexagonal phase transition temperatures of several homogeneous molecular species of plasmenylethanolamine (e.g., the transition temperature of 1-O-(Z)-hexadec-1'-enyl-2-octadec-9'- enoyl-sn-glycero-3-phosphoethanolamine was 28 degrees C). Experiments using ethanolamine glycerophospholipids containing either an ester or a vinyl ether linkage at the sn-1 position demonstrated that introduction of the vinyl ether constituent increased the propensity of these species to assume the hexagonal phase. Collectively, these results identify and substantiate a new technique for the characterization of the lamellar to hexagonal phase transition in phospholipids that requires only small amounts of phospholipids present in dilute membrane suspensions.  相似文献   

16.
The phase behaviour of mixed molecular species of phosphatidylethanolamine, phosphatidylserine and sphingomyelin of biological origin were examined in aqueous co-dispersions using synchrotron X-ray diffraction. The co-dispersions of phospholipids studied were aimed to model the mixing of lipids populating the cytoplasmic and outer leaflets in the resting or scrambled activated cell membrane. Mixtures enriched with phosphatidylethanolamine and phosphatidylserine were characterized by a phase separation of non-lamellar phases (cubic and inverted hexagonal) with a lamellar gel phase comprising the most saturated molecular species. Inclusion of sphingomyelin in the mixture resulted in a suppression of the hexagonal-II phase in favour of lamellar phases at temperatures where a proportion of the phospholipid was fluid. The effect was also dependent on the total amount of sphingomyelin in ternary mixtures, and the lamellar phase dominated in mixtures containing more than 30 mol%, irrespective of the relative proportions of phosphatidylserine/sphingomyelin. A transition from gel to liquid-crystal phase was detected by wide-angle scattering during heating scans of ternary mixtures enriched in sphingomyelin and was shown by thermal cycling experiments to be coupled with a hexagonal-II phase to lamellar transition. In such samples there was evidence of a coexistence of non-lamellar phases with a lamellar gel phase. A transition of the gel phase to the fluid state on heating from 35 to 41 °C was evidenced by a progressive increase in the lamellar d-spacing. The presence of calcium enhanced the phase separation of a lamellar gel phase from a hexagonal-II phase in mixtures enriched in phosphatidylserine. This effect was counteracted by charge screening with 150 mM NaCl. The effect of sphingomyelin on stabilizing the lamellar phase is discussed in the context of an altered composition in the cytoplasmic/outer leaflets of the plasma membrane resulting from scrambling of the phospholipid distribution. The results suggest that a lamellar structure can be retained by the inward translocation of sphingomyelin in biological membranes. The presence of monovalent cations serves also to stabilize the bilayer in activated cells where a translocation of aminoglycerophospholipids and an influx of calcium occur simultaneously.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SAXS small-angle X-ray scattering - SM sphingomyelin - WAXS wide-angle X-ray scattering - XRD X-ray diffraction  相似文献   

17.
M Z Lai  W J Vail  F C Szoka 《Biochemistry》1985,24(7):1654-1661
The membrane stabilization effect of cholesteryl hemisuccinate (CHEMS) and the sensitivity of the CHEMS-phosphatidylethanolamine membranes to protons and calcium ions were studied by differential scanning calorimetry, freeze-fracture electron microscopy, and 31P NMR. (1) At neutral pH, the addition of 8 mol % CHEMS to transesterified egg phosphatidylethanolamine (TPE) raised the lamellar-hexagonal transition temperature of TPE by 11 degrees C. Stable bilayer vesicles were formed when the incorporated CHEMS exceeded 20 mol %. (2) At a pH below 5.5, the protonation of CHEMS enhanced the formation of the hexagonal phase (HII) of TPE. At 25 mol % CHEMS the bilayer-hexagonal transition temperature was lowered by 30 degrees C at pH 4.5. (3) The endothermic acid-induced hexagonal hexagonal transition of TPE-CHEMS was suppressed at 35 mol % CHEMS. However, 31P NMR and electron microscopy indicated that a lamellar-hexagonal transition still occurred at this composition. (4) The main transition of TPE was not affected by the protonation of the incorporated CHEMS, indicating that no macroscopic phase separation occurred in TPE-CHEMS mixtures at low pH. (5) In contrast to the HII-promoting effect of H+, the neutralization of the negative charge on TPE-CHEMS by Ca2+ resulted in aggregates that remained in the lamellar structure even at the hexagonal transition temperature of TPE. It is suggested that calcium might form a complex between CHEMS in apposed bilayers. These results are related to the possible biological function of acidic cholesterol esters in biomembranes.  相似文献   

18.
M Caffrey 《Biochemistry》1985,24(18):4826-4844
A study of the kinetics and mechanism of the thermotropic lamellar gel/lamellar liquid-crystalline and lamellar/inverted hexagonal phase transition in dihexadecylphosphatidylethanolamine (DHPE) at various hydration levels has been carried out. Measurements were made by using a real-time X-ray diffraction method at the Cornell High Energy Synchrotron Source. This represents an extension of an earlier study concerning the lamellar gel/lamellar liquid-crystalline phase transition in dipalmitoylphosphatidylcholine [Caffrey, M., & Bilderback, D. H. (1984) Biophys. J. 45, 627-631]. With DHPE, the chain-melting and the nonbilayer transitions were examined under active heating and passive cooling conditions by using a temperature jump to effect phase transformation. Measurements were made at hydration levels ranging from 0% to 60% (w/w) water, and in all cases, the transitions were found to be repeatable, be reversible, and have an upper bound on the transit times (time required to complete the transition) of less than or equal to 3 s. The shortest transit time recorded for the chain-melting and lamellar/hexagonal transitions was less than 1 s. At 8% (w/w) water, the transit times were still on the order of seconds even though the transition does not involve the intermediate L alpha phase. Note, the measured transit times are gross values incorporating the intrinsic transit time in addition to the time required to heat or cool the sample through the transition temperature range and to supply or remove the latent heat of the transition. Regardless of the direction of the transition, both appear to be two state to within the sensitivity limits of the real-time method. From simultaneous wide- and low-angle measurements at the lamellar chain-melting transition, loss of long-range order in the lamellar gel phase appears to precede the chain-melting process. On the basis of the real-time X-ray diffraction measurements, a mechanism is proposed for the lamellar/hexagonal phase transition. The mechanism does not involve large or energetically expensive molecular rearrangements, leads directly to a hexagonal lattice coplanar with the lamellar phase, incorporates facile reversibility, repeatability, and cooperativity, accounts for an observed, apparent memory in the hexagonal phase of the original lamellar phase orientation, and is consistent with the experimental observation of a predominantly two-state transition. In conjunction with the kinetic measurements, the DHPE/water phase diagram was constructed. At and above 12% (w/w) water, the thermotropic transition sequence is L beta'/L alpha/HII.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Alonso A  Goñi FM  Buckley JT 《Biochemistry》2000,39(46):14019-14024
Channel formation by the bacterial toxin aerolysin follows oligomerization of the protein to produce heptamers that are capable of inserting into lipid bilayers. How insertion occurs is not understood, not only for aerolysin but also for other proteins that can penetrate membranes. We have studied aerolysin channel formation by measuring dye leakage from large unilamellar egg phosphatidylcholine vesicles containing varying amounts of other lipids. The rate of leakage was enhanced in a dose-dependent manner by the presence of phosphatidylethanolamine, diacylglycerol, cholesterol, or hexadecane, all of which are known to favor a lamellar-to-inverted hexagonal (L-H) phase transition. Phosphatidylethanolamine molecular species with low L-H transition temperatures had the largest effects on aerolysin activity. In contrast, the presence in the egg phosphatidylcholine liposomes of lipids that are known to stabilize the lamellar phase, such as sphingomyelin and saturated phosphatidylcholines, reduced the rate of channel formation, as did the presence of lysophosphatidylcholine, which favors positive membrane curvature. When two different lipids that favor hexagonal phase were present with egg PC in the liposomes, their stimulatory effects were additive. Phosphatidylethanolamine and lysophosphatidylcholine canceled each other's effect on channel formation.  相似文献   

20.
An oxidized form of cholesterol, atheronal, is a form found in vivo that has been associated with human pathologies. We have studied mixtures of this oxidized sterol with the phospholipids phosphatidylethanolamine and phosphatidylcholine. We used phospholipids either with palmitoyl and oleoyl acyl chains on the C1 and C2 carbon atoms of glycerol or with both acyl chains being palmitoleoyl. We also compared the effects of atheronal on the curvature properties of these lipids with the action of cholesterol. We studied the bilayer to hexagonal phase transition temperature of mixtures of these lipids using differential scanning calorimetry as well as the dimensions of the hexagonal phase cylinders using X-ray diffraction. Disordering of the lamellar phase was also qualitatively assessed by the loss of sharp diffraction peaks. Our results demonstrate that the modulation of membrane curvature in these systems depends not only on the nature of the sterol, but also on the acyl chain composition of the phospholipids used. In addition, some of the effects of atheronal could be ascribed to reaction of the aldehyde and ketone groups of this oxidized sterol with the amino group of phosphatidylethanolamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号