首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait.  相似文献   

2.
IntroductionHospitalization in the elderly, even in short stays, is associated with functional impairment. Once the acute illness is reversed, the evolution of this hospital-generated impairment can be variable, and a year after hospitalization more than half of the elderly patients remain impaired. This impairment is associated with a higher risk of institutionalization, of mortality at discharge and of 30-day mortality. Previous studies have shown how interdisciplinary physical exercise programs can improve functionality at discharge and decrease mortality rate, hospital stay and institutionalization.Study design and objectivesIn the Acute Geriatric Unit of the Gregorio Marañon University hospital a randomized controlled trial was carried out to assess the effectiveness of an exercise and health education program to prevent functional decline during hospitalization and at three months after discharge in elderly subjects aged 74 years or older. Patients were excluded if at least one of the following exclusion criteria was met: baseline Barthel Index (15-days prior hospitalization) below 20, severe cognitive impairment or inability to walk. The intervention consisted on a physical exercise program (that included squats, balance, gait stimulation, elastic bands, and inspiratory muscle training) and health education program. The control group received usual care.  相似文献   

3.

Objective

To evaluate changes in physical performance in institutionalized older adults through a program of physiotherapy exercises.

Materials and methods

A quasi-experimental study was conducted on adults over 60 years-old, institutionalized in Lima, Peru. The exercise program was implemented in 45 minutes sessions included warming-up, muscle strengthening exercises, balance, gait training and cooling phase, three times a week for 12 weeks. Physical performance was measured with the Short Physical Performance Battery (SPPB) one week before and after the intervention. It included 45 participants, of whom 16 did not attend any of the sessions and was used as a control group.

Results

The mean age was 77.6 ± 7.1 years, and 62.2% were women. The mean baseline SPPB was 7.0 ± 1.6 in the intervention group, and 6.9 ± 1.9 in the control group (P=.90). A change of 2.6 ± 1.8 was observed in the SPPB of the intervention group versus -1.4 ± 2.0 in the control group (P<.001).

Conclusions

The development of a physiotherapy exercise program for institutionalized elderly increases physical performance, which could be implemented in care centers for elderly.  相似文献   

4.
This study aimed to determine gait ability at hospital discharge in patients undergoing total knee arthroplasty (TKA) as an indicator of the risk of falling. Fifty-seven patients undergoing primary TKA for knee osteoarthritis participated in this study. Gait variability measured with accelerometers and physical function including knee range of motion (ROM), quadriceps strength, walking speed, and the Timed Up and Go (TUG) test were evaluated preoperatively and at discharge from the hospital (1 month before and 5 days after surgery). All patients were discharged directly home at 5 days after surgery. Knee flexion of ROM, quadriceps strength, walking speed, and the TUG test results were significantly worse at hospital discharge than preoperatively (p < 0.001). However, gait variability was not significantly different before and after TKA. This result indicated that patients following TKA surgery could walk at hospital discharge as stably as preoperatively regardless of the decrease in physical function, including knee ROM, quadriceps strength, and gait speed after surgery.  相似文献   

5.

Introduction

Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power.

Trial Registration

Dutch Trial Register NTR3418  相似文献   

6.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

7.

Background

Physical performance is a major determinant of health in older adults, and is related to lifestyle factors. Dietary fiber has multiple health benefits. It remains unclear whether fiber intake is independently linked to superior physical performance. We aimed to assess the association between dietary fiber and physical performance in older adults.

Methods

This was a cross-sectional study conducted with community-dwelling adults aged 55 years and older (n=2680) from the ongoing Healthy Aging Longitudinal Study (HALST) in Taiwan 2008-2010. Daily dietary fiber intake was assessed using a validated food frequency questionnaire. Physical performance was determined objectively by measuring gait speed, 6-minute walk distance, timed “up and go” (TUG), summary performance score, hand grip strength.

Results

Adjusting for all potential confounders, participants with higher fiber intake had significantly faster gait speed, longer 6-minute walk distance, faster TUG, higher summary performance score, and higher hand grip strength (all P <.05). Comparing with the highest quartile of fiber intake, the lowest quartile of fiber intake was significantly associated with the lowest sex-specific quartile of gait speed (adjusted OR, 2.18 in men [95% CI, 1.33-3.55] and 3.65 in women [95% CI, 2.20-6.05]), 6-minute walk distance (OR, 2.40 in men [95% CI, 1.38-4.17] and 4.32 in women [95% CI, 2.37-7.89]), TUG (OR, 2.42 in men [95% CI, 1.43-4.12] and 3.27 in women [95% CI, 1.94-5.52]), summary performance score (OR, 2.12 in men [95% CI, 1.19-3.78] and 5.47 in women [95% CI, 3.20-9.35]), and hand grip strength (OR, 2.64 in men [95% CI, 1.61-4.32] and 4.43 in women [95% CI, 2.62-7.50]).

Conclusions

Dietary fiber intake was independently associated with better physical performance.  相似文献   

8.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

9.
The purpose of this study was to evaluate whether preoperative gait adaptations persist one year after THR in the same set of subjects. The hypothesis tested was that hip dynamic range of motion and peak external moments during walking return to normal after THR. Hip kinematics and kinetics were measured for 28 subjects before and one year after THR and compared to those of 25 subjects with radiographically normal hips. All THR subjects improved clinically after surgery with Harris hip scores improving from 33-85 (average 53) to 61-100 (average 95) (sign test p<0.001). Preoperatively dynamic hip range of motion (ROM), and all peak external moments were reduced compared to normal (Mann-Whitney p< or =0.040). Improvement was seen in the ROM and all but the frontal plane, and external rotation peak moments (Friedman p< or =0.023). The preoperative and postoperative values of the ROM, and peak flexion, abduction and external rotation moments were all significantly correlated (Spearman p<0.020) indicating a possible learned effect from before THR surgery. Postoperative THR subjects continued to have a significantly lower than normal ROM, and peak adduction and peak internal rotation moments (Mann-Whitney p< or =0.003). Despite good to excellent clinical functional outcome, gait in THR patients does not return to normal by one year after surgery. Aggressive muscle strengthening is currently not emphasized after THR surgery. Some THR patients may benefit from more intensive rehabilitation before and after surgery.  相似文献   

10.
Currently in the literature there is no consensus on which procedure for normalizing seated spine kinematics is most effective. The objective of this study was to examine the changes in the range of motion (ROM) of seated posture trials when expressed as a percent of maximum standing and seated ROM. A secondary purpose was to determine whether the typical maximum planar calibration movements (flexion, lateral-bend, and axial twist) elicited the respective maximum ROM values for each spine region versus postures with specific movement instruction. Thirteen male participants completed seven different movement trials. These consisted of the maximum planar movement trials, with the remaining four postures being combinations of specific lumbar and thoracic movements. Global and relative angles for the upper-thoracic, mid-thoracic, lower-thoracic, and lumbar regions were calculated and normalized to both a seated and standing reference posture. When normalizing both global and relative angles the standing reference appears optimal for flexion, twisting and lateral bend angles in all spine regions, with the exception of relative flexion angle in the mid-thoracic region. The maximum planar movement trials captured the greatest ROM for each global angle, relative lower-thoracic angle and relative lumbar flexion angle, but did not for all other relative angles in the upper-thoracic, mid-thoracic, and lumbar regions. If future researchers can only collect one reference posture these results recommend that a standing reference posture be collected for normalizing seated spine kinematics, although a seated reference posture should be collected if examining relative flexion angles at the mid-thoracic region.  相似文献   

11.

Background

The role of Vitamin D in musculoskeletal functionality among elderly people is still controversial. We investigated the association between serum 25-hydroxyvitamin D (25OHD) levels and physical performance in older adults.

Methods

2694 community-dwelling elderly women and men from the Progetto Veneto Anziani (Pro.V.A.) were included. Physical performances were assessed by: tandem test, 5 timed chair stands (TCS), gait speed, 6-minute walking (6 mW) distance, handgrip strength, and quadriceps strength. For each test, separate general linear models and loess plots were obtained in both genders, in relation to serum 25OHD concentrations, controlling for several potential confounders.

Results

Linear associations with 25OHD levels were observed for TCS, gait speed, 6 mW test and handgrip strength, but not for tandem test and quadriceps strength. After adjusting for potential confounders, linear associations with 25OHD levels were still evident for the 6 mW distance in both genders (p = .0002 in women; <.0001 in men), for TCS in women (p = .004) and for gait speed (p = .0006) and handgrip strength (p = .03) in men. In loess analyses, performance in TCS in women, in gait speed and handgrip strength in men and in 6 mW in both genders, improved with increasing levels of 25OHD, with most of the improvements occurring for 25OHD levels from 20 to 100 nmol/L.

Conclusion

lower 25OHD levels are associated with a worse coordination and weaker strength (TCS) in women, a slower walking time and a lower upper limb strength in men, and a weaker aerobic capacity (6 mW) in both genders. For optimal physical performances, 25OHD concentrations of 100 nmol/L appear to be more advantageous in elderly men and women, and Vitamin D supplementation should be encouraged to maintain their 25OHD levels as high as this threshold.  相似文献   

12.
The effects of normal aging and orthopedic conditions on gait patterns during customary walking have been extensively investigated. Empirical evidence supports the notion that sex differences exist in the gait patterns of young adults but it is unclear as to whether sex differences exist in older adults. The aim of this study was to investigate sex-specific differences in gait among older adults. Study participants were 336 adults (50-96 years; 162 women) enrolled in the Baltimore Longitudinal Study of Aging (BLSA) who completed walking tasks at self-selected speed without assistance. After adjusting for significant covariates, women walked with higher cadence (p=0.01) and shorter stride length (p=0.006) compared to men, while gait speed was not significantly related to sex. Women also had less hip range of motion (ROM; p=0.004) and greater ankle ROM (p<0.001) in the sagittal-plane, and greater hip ROM (p=0.004) in the frontal-plane. Hip absorptive mechanical work expenditure (MWE) of the women was greater in the sagittal-plane (p<0.001) and lower in the frontal-plane (p<0.001), compared to men. In summary, women's gait is characterized by greater ankle ROM than men while men tend to have greater hip ROM than women. Characterizing unique gait patterns of women and men with aging may be beneficial for detecting the early stages of gait abnormalities that may lead to pathology.  相似文献   

13.

Background

This study aims to examine age-related and obstacle height-related differences in movements while stepping over obstacles.

Methods

The participants included 16 elderly and nine young women. Obstacles that were either 5 or 20 cm high were positioned at the center of a 4-m walking path. The participants were instructed to walk along the path as quickly as possible. The participants’ movements were analyzed using a three-dimensional motion analysis system that recorded their movements as they walked and stepped over the obstacles.

Results and conclusions

Seven joint angles and the distances between the ground and six markers were examined in the initial contact and swing instants of the leading and trailing limbs. In the initial contact instant, the elderly women prepared for stepping with a lower toe height than the young women when stepping over the 20-cm obstacle. Trunk rotation was greater in the young women than in the elderly women. In the swing instant, the elderly women showed greater ankle dorsiflexion and hip adduction angles for the leading limb when stepping over the 20-cm obstacle. They moved the trailing limb with increased ankle dorsiflexion, knee flexion, hip flexion, and foot inversion to ensure that they did not touch the obstacle as they stepped over it. These movement patterns are characteristic of elderly individuals who cannot easily lift their lower limbs because of decreased lower-limb strength.  相似文献   

14.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

15.
Stretching exercise is effective for increasing joint range of motion (ROM). However, the Surgeon General's Report and the American College of Sports Medicine cite a lack of studies identifying strategies capable of increasing the effectiveness of stretching exercise. This investigation evaluated adding modest weight (0.45-1.35 kg) to a stretching exercise routine (Body Recall [BR]) on joint ROM. Forty-three subjects ages 55-83 years participated in 1 of 2 training groups, BR, BR with weights (BR+W), or a control group (C). ROM was evaluated at the neck, shoulder, hip, knee, and ankle before and after 10 weeks of exercise. Using ANCOVA, significant differences (p < 0.01) were observed for right and left cervical rotation, hip extension, ankle dorsiflexion, ankle plantar flexion, and shoulder flexion. Post hoc analysis revealed that cervical rotation (left and right), hip extension, and ankle dorsiflexion for BR+W subjects differed significantly from BR and C (p < 0.01). Significant differences with shoulder flexion and ankle plantar flexion were found for both BR and BR+W in comparison to C (p < 0.01). Results indicate that addition of weights enhanced the effectiveness of stretching exercise for increasing joint ROM with 4 of the 6 selected measurements. Thus, a modest intensity exercise program that is within the reach of most elderly may significantly affect joint ROM and flexibility.  相似文献   

16.
BackgroundForward head posture is a head-on-trunk malalignment, which results in musculoskeletal dysfunction and neck pain. To improve forward head posture, both the craniocervical flexion exercise and the suboccipital release technique have been used. Objectives: The purpose of this study was to compare the immediate effects of craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise on craniovertebral angle, cervical flexion and extension range of motion, and the muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis during craniocervical flexion exercise in subjects with forward head posture.MethodsIn total, 19 subjects (7 males, 12 females) with forward head posture were recruited using G-power software. Each subject performed craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise in random order. After one intervention was performed, the subject took a 20 min wash out period to minimize any carry-over effect between interventions. Craniovertebral angle, cervical flexion and extension range of motion, and the muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis were measured. A one-way, repeated-measures ANOVA was used to assess differences between the effects of the craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise interventions in the same group.ResultsCraniovertebral angle (p < 0.05), cervical flexion range of motion (p < 0.05), and cervical extension range of motion (p < 0.001) were significantly greater after suboccipital release combined with craniocervical flexion exercise compared to craniocervical flexion exercise alone. The muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis were significantly lower during suboccipital release combined with craniocervical flexion exercise than during craniocervical flexion exercise alone across all craniocervical flexion exercise phases except the first (all p < 0.05).ConclusionThe addition of suboccipital release to craniocervical flexion exercise provided superior benefits relative to craniocervical flexion exercise alone as an intervention for subjects with forward head posture.  相似文献   

17.
ObjectiveMuscle strengthening exercises have been shown to improve pain and function in adults with mild-to-moderate knee osteoarthritis, but individual response rates can vary greatly. Predicting individuals who respond and those who do not is important in developing a more efficient and effective model of care for knee osteoarthritis (OA). Therefore, the purpose of this study was to use pre-intervention gait kinematics and patient-reported outcome measures to predict post-intervention response to a 6-week hip strengthening exercise intervention in patients with mild-to-moderate knee OA.MethodsThirty-nine patients with mild-to-moderate knee osteoarthritis completed a 6-week hip-strengthening program and were subgrouped as Non-Responders, Low-Responders, or High-Responders following the intervention based on their change in Knee injury Osteoarthritis Outcome Score (KOOS). Predictors of responder subgroups were retrospectively determined from baseline patient-reported outcome measures and kinematic gait parameters in a discriminant analysis of principal components. A 3–4 year follow-up on 16 of the patients with knee OA was also done to examine long-term changes in these parameters.ResultsA unique combination of patient-reported outcome measures and kinematic factors was able to successfully subgroup patients with knee osteoarthritis with a cross-validated classification accuracy of 85.4%. Lower patient-reported function in daily living (ADL) scores and hip frontal plane kinematics during the loading response were most important in classifying High-Responders from other sub-groups, while a combination of hip, knee, ankle kinematics were used to classify Non-Responders from Low-Responders.ConclusionPatient-reported outcome measures and objective biomechanical gait data can be an effective method of predicting individual treatment success to an exercise intervention. Measuring gait kinematics, along with patient-reported outcome measures in a clinical setting can be useful in helping make evidence-based decisions regarding optimal treatment for patients with knee OA.  相似文献   

18.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

19.

Background

People with Parkinson's disease are twice as likely to be recurrent fallers compared to other older people. As these falls have devastating consequences, there is an urgent need to identify and test innovative interventions with the potential to reduce falls in people with Parkinson's disease. The main objective of this randomised controlled trial is to determine whether fall rates can be reduced in people with Parkinson's disease using exercise targeting three potentially remediable risk factors for falls (reduced balance, reduced leg muscle strength and freezing of gait). In addition we will establish the cost effectiveness of the exercise program from the health provider's perspective.

Methods/Design

230 community-dwelling participants with idiopathic Parkinson's disease will be recruited. Eligible participants will also have a history of falls or be identified as being at risk of falls on assessment. Participants will be randomly allocated to a usual-care control group or an intervention group which will undertake weight-bearing balance and strengthening exercises and use cueing strategies to address freezing of gait. The intervention group will choose between the home-based or support group-based mode of the program. Participants in both groups will receive standardized falls prevention advice. The primary outcome measure will be fall rates. Participants will record falls and medical interventions in a diary for the duration of the 6-month intervention period. Secondary measures include the Parkinson's Disease Falls Risk Score, maximal leg muscle strength, standing balance, the Short Physical Performance Battery, freezing of gait, health and well being, habitual physical activity and positive and negative affect schedule.

Discussion

No adequately powered studies have investigated exercise interventions aimed at reducing falls in people with Parkinson's disease. This trial will determine the effectiveness of the exercise intervention in reducing falls and its cost effectiveness. This pragmatic program, if found to be effective, has the potential to be implemented within existing community services.

Trial registration

The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12608000303347).  相似文献   

20.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号