首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We sought to determine whether ambient temperature (T(a)) affects gonadal function by altering the rate at which circadian rhythms entrain to short day lengths. Syrian hamsters were housed in cages where they received 14 h of light per day ("long days," 14L) at 22 degrees C. Hamsters were then transferred to cages to receive 10 h of light per day ("short days," 10L) and kept at 5, 22, or 28 degrees C or were maintained in 14L at 22 degrees C. Body mass and estimated testis volume as well as duration of nocturnal locomotor activity (alpha), previously established as a reliable indicator of the duration of nocturnal melatonin secretion, were determined over the course of 24 wk. Testicular regression in short days was accelerated by 4 wk at 5 degrees C and delayed by 3 wk at 28 degrees C relative to 22 degrees C. The interval between alpha-expansion and initiation of testicular regression was markedly affected by T(a) with delays of 0, 3, and 6 wk at 5, 22, and 28 degrees C, respectively. All hamsters held at 5 and 22 degrees C underwent testicular regression, but 25% of those maintained at 28 degrees C failed to do so. We suggest that T(a) modulates testicular regression primarily by affecting responsiveness of neuroendocrine target tissues to long melatonin signals.  相似文献   

2.
Puberty, which is markedly delayed in male Siberian hamsters (Phodopus sungorus) born into short day lengths, is controlled by an interval timer regulated by the duration of nocturnal melatonin secretion. Properties of the interval timer were assessed by perturbing normal patterns of melatonin secretion in males gestated and maintained thereafter in 1 of 2 short day lengths, 10 h light/day (10 L) or 12L. Melatonin secretion of short-day hamsters was suppressed by constant light treatment or modified by daily injection of propranolol to mimic nocturnal melatonin durations typical of long-day hamsters. Constant light treatment during weeks 3 to 5 induced early incomplete gonadal growth in 12L but not 10 L hamsters but did not affect late onset of gonadal development indicative of puberty in either photoperiod. Propranolol treatment during postnatal weeks 3 to 5 induced transient growth of the testes and ultimately delayed the timing of puberty by 3 weeks. Similar treatments between weeks 5 and 7 or on alternate weeks for 24 weeks did not affect the interval timer. The first 2 weeks after weaning may constitute a critical period during which the interval timer is highly responsive to photoperiod. Alternatively, the hamsters' photoperiodic history rather than age or developmental stage may be the critical variable. The interpolation of long-day melatonin signals at the time of weaning does not appear to reset the interval timer to its zero position but may reduce timer responsiveness to long-day melatonin signals several weeks later.  相似文献   

3.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

4.
The present study tested the hypothesis that responsiveness to melatonin, the presence of the melatonin rhythm in circulation, and parameters of the GnRH neuron system are sustained across the aging continuum in Siberian hamsters. Afternoon melatonin injections induced testicular atrophy in 42% of aged males compared with 100% of adult males. The proportion of aged males failing to respond to the melatonin injections was similar to the proportion that failed to undergo testicular regression upon exposure to short days. Exposure to short days induced testicular atrophy in juvenile and adult hamsters; however, regression was incomplete or absent in 43% of aged males. The nocturnal rise in melatonin was similar with regard to duration and peak amplitude, and appropriate with respect to photoperiod in 25-day-old juveniles, adult (5 months), and aged (17 months) hamsters. Neither advanced age nor timed melatonin treatments affected GnRH neuron numbers or distribution. Fertility was maintained in aged and adult males to a comparable extent with respect to latency to first litter and number of pups per litter; reproductive success was dramatically reduced in aged compared with adult females. Because melatonin rhythms accurately reflect day length information throughout the continuum from puberty to advanced age, the present evidence suggests that limitations in testis regression in response to short days or exogenous melatonin in a subset of aged males result from a reduced ability to respond to melatonin. In the wild, failure to undergo testicular regression in the presence of shortening day lengths may extend the breeding season of aged males.  相似文献   

5.
The duration of nocturnal pineal melatonin secretion transduces effects of day length (DL) on the neuroendocrine axis of photoperiodic rodents. Long DLs support reproduction, and short DLs induce testicular regression, followed several months later by spontaneous recrudescence; gonadal regrowth is thought to reflect development of tissue refractoriness to melatonin. In most photoperiodic species, pinealectomy does not diminish reproductive competence in long DLs. Turkish hamsters (Mesocricetus brandti) deviate from this norm: elimination of melatonin secretion in long-day males by pinealectomy or constant light treatment induces testicular regression and subsequently recrudescence; the time course of these gonadal transitions is similar to that observed in males transferred from long to short DLs. In the present study, long-day Turkish hamsters that underwent testicular regression and recrudescence in constant light subsequently were completely unresponsive to the antigonadal effects of short DLs. Other hamsters that manifested testicular regression and recrudescence in short DLs were unresponsive to the antigonadal effects of pinealectomy or constant light. Long-term suppression of melatonin secretion induces a physiological state in Turkish hamsters similar or identical to the neuroendocrine refractoriness produced by short-day melatonin signals (i.e., neural refractoriness to melatonin develops in the absence of circulating melatonin secretion). A melatonin-independent interval timer, which would remain operative in the absence of melatonin during hibernation, may determine the onset of testicular recrudescence in the spring. In this respect, Turkish hamsters differ from most other photoperiodic rodents.  相似文献   

6.
We investigated the impact of frequency and pattern of melatonin signals on reproductive development in Siberian hamsters. Juvenile males gestated in short day lengths and housed in constant illumination to suppress melatonin secretion were infused with melatonin for 5 h either once or twice per day for 20 days. Melatonin infusions at either frequency produced equivalent increases in testes and body weights that exceeded those of animals infused with saline but were indistinguishable from those of hamsters transferred to long day lengths. The reproductive system appears to be maximally stimulated by a single short melatonin signal each day. Other animals kept from birth in a short photoperiod were treated 6 h after onset of darkness with the beta-adrenergic receptor antagonist DL-propranolol to shorten melatonin secretion on the night of injection but not on subsequent nights. This permitted interpolation of short nightly melatonin signals of 4-5 h duration against a background of long melatonin signals of 10-12 h duration on other nights. Treatment regimes that maintained a 1:1 ratio of short to long melatonin signals for 8 wk stimulated reproductive development; a 1:2 signal ratio, in each of three different patterns, was uniformly ineffective. The number of successive short melatonin signals had little influence on the interval across which successive melatonin signals were summated to influence photoperiodic traits. The neuroendocrine axis appears more responsive to short melatonin signal frequency than pattern for development of the summer phenotype.  相似文献   

7.
Short day lengths induce testicular regression in seasonally breeding Syrian hamsters. To test whether the ventromedial hypothalamus is necessary to maintain reproductive quiescence once testicular regression has been achieved, photoregressed male hamsters were subjected to lesions of the ventromedial hypothalamus (VMHx), pinealectomy (Pinx), or sham operation (Sham). VMHx hamsters underwent accelerated gonadal recrudescence compared to Pinx and Sham hamsters. Recovery of prolactin concentrations (PRL) to values characteristic of long-day hamsters was hastened in the VMHx animals compared to Sham hamsters. Concentrations of follicle stimulating hormone (FSH) increased prematurely in both the VMHx and Pinx animals, beginning a few weeks after surgery. By the time the gonads had undergone recrudescence and the hamsters were refractory to melatonin, PRL and FSH concentrations had returned to baseline long-day values in all groups; there was no evidence of hypersecretion of either hormone in any of the animals with lesions. Melatonin concentrations of VMHx hamsters did not differ from those of sham-operated animals, but because only a single determination was made, it remains possible that VMH damage altered the duration of nightly melatonin secretion. An intact VMH appears to be essential for the continued maintenance of reproductive suppression induced by exposure to short day lengths; these and earlier findings suggest that the VMH-dorsomedial hypothalamic complex mediates regression of the reproductive apparatus during decreasing day lengths of late summer and early autumn and also is necessary to sustain regression during the winter months.  相似文献   

8.
The pineal hormone melatonin influences circadian rhythms and also mediates reproductive responses to photoperiod. The authors tested whether pinealectomy influences circadian oscillators responsible for induction of nonresponsiveness to short day lengths by preventing normal short-day patterns of circadian entrainment. Adult male Siberian hamsters were pinealectomized or sham operated, maintained in either 18 h light per day (18L) or 15L for 10 weeks, and then tested for responsiveness to 10L. Because pinealectomized hamsters do not show gonadal regression in short day lengths, responsiveness was assessed by measuring phase angle of entrainment and the length of the nightly activity period following transfer to 10L. The incidence of nonresponsiveness was significantly higher in 18L hamsters than in 15L hamsters but was unaffected by pineal status. Fully 88% of 18L hamsters failed to entrain to 10L in the normal short-day manner; the duration of nightly activity remained compressed, and the phase angle of entrainment was large and negative relative to lights off. The 15L hamsters entrained normally to 10L. Exposure to constant light after 10L treatment was equally effective in inducing arrhythmicity in pinealectomized and intact hamsters. Changes in the period of morning and evening circadian oscillators subsequent to 18L treatment did not predict circadian responsiveness to short photoperiod. Long-day induction of photo-nonresponsiveness, which prevents winter responses to short day lengths, occurs independently of pineal melatonin feedback on the circadian system.  相似文献   

9.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

10.
Siberian hamsters (Phodopus sungorus) exhibit seasonal cycles of reproduction driven by changes in day length. Day length is encoded endogenously by the duration of nocturnal melatonin (Mel) secretion from the pineal gland. Short-duration Mel signals stimulate reproduction and long-duration signals inhibit reproduction. The mechanism by which Mel signals are decoded at the level of neural target tissues remains uncharacterized. In Siberian hamsters, exposure to short day lengths or injections of Mel in long days results in a decrease in hypothalamic expression of type 2 iodothyronine deiodinase (Dio2) mRNA. Dio2 catalyzes the conversion of the thyroid hormone thyroxine to triiodothyronine (T3). Thus exposure to short and long day lengths should decrease and increase hypothalamic T3 concentrations, respectively. We tested the hypothesis that exogenous T3 administered to short-day hamsters would mimic exposure to long day lengths with respect to gonadal stimulation. Hamsters gestated and raised in short day lengths that exhibited photoinhibition of the testes were given daily subutaneous injections of T3 or saline vehicle for 4 wk beginning at week 12 of life. The results indicate that exogenous T3 induced gonadal growth in short-day hamsters and delayed spontaneous gonadal development by an interval equal to the number of weeks during which T3 was administered. T3 injections delayed gonadal regression if given coincident with the transfer of hamsters from long to short day lengths. These results suggest that T3 mimics long day exposure in Siberian hamsters and may serve as an intermediate step between the Mel rhythm and the reproductive response.  相似文献   

11.
Seasonal changes in mammalian physiology and behavior are proximately controlled by the annual variation in day length. Long summer and short winter day lengths markedly alter the amplitude of endogenous circadian rhythms and may affect ultradian oscillations, but the threshold photoperiods for inducing these changes are not known. We assessed the effects of short and intermediate day lengths and changes in reproductive physiology on circadian and ultradian rhythms of locomotor activity in Siberian hamsters. Males were maintained in a long photoperiod from birth (15 h light/day; 15 L) and transferred in adulthood to 1 of 7 experimental photoperiods ranging from 14 L to 9 L. Decreases in circadian rhythm (CR) robustness, mesor and amplitude were evident in photoperiods ≤14 L, as were delays in the timing of CR acrophase and expansion of nocturnal activity duration. Nocturnal ultradian rhythms (URs) were comparably prevalent in all day lengths, but 15 L markedly inhibited the expression of light-phase URs. The period (τ'), amplitude and complexity of URs increased in day lengths ≤13 L. Among hamsters that failed to undergo gonadal regression in short day lengths (nonresponders), τ' of the dark-phase UR was longer than in photoresponsive hamsters; in 13 L the incidence and amplitude of light-phase URs were greater in hamsters that did not undergo testicular regression. Day lengths as long as 14 L were sufficient to trigger changes in the waveform of CRs without affecting UR waveform. The transition from a long- to a short-day ultradian phenotype occurred for most UR components at day lengths of 12 L-13 L, thereby establishing different thresholds for CR and UR responses to day length. At the UR-threshold photoperiod of 13 L, differences in gonadal status were largely without effect on most UR parameters.  相似文献   

12.
Summary A recent study has shown that olfactory bulbectomy (BX) will prevent reproductive regression associated with short photoperiod in male golden hamsters. The results of experiments reported in this paper show that bulbectomized hamsters on long or short photoperiod still show a large nocturnal elevation in pineal melatonin production and that BX inhibits the reproductive regression induced by exogenous melatonin in pinealectomized hamsters. The data therefore indicate that BX does not inhibit short photoperiod induced testicular regression by altering melatonin secretion.  相似文献   

13.
During the first 7 weeks of postnatal life, short day lengths inhibit the onset of puberty in many photoperiodic rodents, but not in Syrian hamsters. In this species, timing of puberty and fecundity are independent of the early postnatal photoperiod. Gestational day length affects postnatal reproductive development in several rodents; its role in Syrian hamsters has not been assessed. We tested the hypothesis that cumulative effects of pre- and postnatal short day lengths would restrain gonadal development in male Syrian hamsters. Males with prenatal short day exposure were generated by dams transferred to short day lengths 6 weeks, 3 weeks, and 0 weeks prior to mating. Additional groups were gestated in long day lengths and transferred to short days at birth, at 4 weeks of age, or not transferred (control hamsters). In pups of dams exposed to short day treatment throughout gestation, decreased testis growth was apparent by 3 weeks and persisted through 9 weeks of age, at which time maximum testis size was attained. A subset of males (14%), whose dams had been in short days for 3 to 6 weeks prior to mating displayed pronounced delays in testicular development, similar to those of other photoperiodic rodents. This treatment also increased the percentage of male offspring that underwent little or no gonadal regression postnatally (39%). By 19 weeks of age, males housed in short days completed spontaneous gonadal development. After prolonged long day treatment to break refractoriness, hamsters that initially were classified as nonregressors underwent testicular regression in response to a 2nd sequence of short day lengths. The combined action of prenatal and early postnatal short day lengths diminishes testicular growth of prepubertal Syrian hamsters no later than the 3rd week of postnatal life, albeit to a lesser extent than in other photoperiodic rodents.  相似文献   

14.
The reproductive system of Siberian hamsters (Phodopus sungorus) undergoes rapid phenotypic responses to changes in day length that occur around the time of weaning. The present experiments tested whether the immune system of Siberian hamsters is similarly photoperiodic early in life and whether photoperiodic changes in melatonin or gonadal hormone secretions mediate any such responses to day length. Circulating blood leukocyte concentrations (WBC) were measured in juvenile male Siberian hamsters that were gestated in long-days (LD), transferred to short-days (SD) on the day of birth, and subsequently either remained in SD or were transferred from SD to LD at 18 days of age (day 18). WBC values were comparable between LD and SD hamsters on day 18. Between day 18 and day 32, SD hamsters exhibited a 3-fold increase in WBC, whereas LD hamsters failed to undergo a significant increase in WBC during this interval. WBC of LD hamsters was significantly lower than that of SD hamsters on day 25 and on day 32. In LD housed males, peripheral injections of melatonin delivered so as to extend the nocturnal duration of elevated endogenous melatonin secretion (i.e., provided in late afternoon) on days 18-31 increased WBC as measured on day 32. Peripubertal (day 17) gonadectomy abolished the immunosuppressive effect of LD exposure on WBC, and treatment with silastic implants containing testosterone suppressed WBC independent of photoperiod treatment. These data indicate that juvenile Siberian hamsters are immunologically responsive to photoperiod and that the leukocyte responses to day length are the result of melatonin-mediated effects of photoperiod on testicular hormone secretion.  相似文献   

15.
Removal of the pineal, or denervation of this gland by superior cervical ganglionectomy, blocks testicular regression in golden hamsters exposed to short photoperiods. Aspiration of the olfactory bulbs or lesions of the suprachiasmatic or paraventricular nuclei of the hypothalamus (SCNx or PVNx) have similar effects. We have examined the effects of these operations on pineal melatonin content and gonadal responses to various patterns of exogenous melatonin in order to examine the roles played by the olfactory bulbs, the SCN, and the PVN in hamster photoperiodism. SCNx and PVNx significantly reduced pineal melatonin content throughout the dark phase, while bulbectomy did not significantly affect melatonin concentrations at the time of the nocturnal peak. Bulbectomy significantly delayed the nightly onset of locomotor activity in hamsters exposed to 14L:10D, but not that of animals housed in 10L:14D. Although bulbectomy reduced the gonadal response to one or three daily injections of melatonin, these individuals exhibited significant testicular regression in response to melatonin as long as injections fell in the evening. In contrast, destruction of the PVN rendered hamsters unresponsive to one daily melatonin injection, but equally responsive to three injections, regardless of the time of day at which these injections were given. Whereas exposure of bulbectomized hamsters to 30 weeks of short days made them refractory to subsequent melatonin challenge, PVNx hamsters remained sensitive to appropriately timed melatonin treatments regardless of their photoperiodic history. Many, but not all hamsters that experienced complete SCN lesions remained sensitive to three daily melatonin injections.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The illuminance threshold for maintenance of testicular function was found to be considerably higher in Syrian hamsters kept in continuous light (LL) than in hamsters on long-day (14-hr) photoperiods (LD 14:10), or in a similar-length skeleton photoperiod (LDSK); the threshold lay between 3 and 30 lux in LL and at approximately 0.3 lux in LD 14:10 or LDSK. The threshold for testicular maintenance in LL was related to the capacity of LL to suppress nocturnal melatonin secretion: 400 lux totally suppressed, 30 or 3 lux partially suppressed, and 0.3 lux failed to suppress melatonin secretion. Hamsters in the LD and LDSK groups, whose locomotion was entrained into a pattern characteristic of long-day exposure, maintained full testicular function; those whose locomotion free-ran or assumed a pattern of entrainment characteristic of short-day exposure underwent testicular regression. These results suggest that light signals entrain the circadian rhythms of locomotion and melatonin secretion in a similar manner, and that LL is less effective than LD or LDSK in shortening the duration of melatonin secretion. For hamsters in LL, a direct relationship was seen between the free-running period (tau) of locomotion and log10 illuminance at 0.3, 3.0, and 30 lux, but tau at 400 lux was no longer than tau at 30 lux. Splitting of locomotion did not occur at 0.3 or 3.0 lux, and occurred in 43% and 62% of hamsters in 30 and 400 lux, respectively.  相似文献   

17.
The role of the intergeniculate leaflet of the thalamus (IGL) in photoperiod responsiveness was examined in a laboratory-selected line of photoperiod nonresponsive (NR) Siberian hamsters. NR hamsters fail to exhibit typical winter-type responses (i.e., gonadal regression and development of winter-type pelage) when exposed to short day lengths (e.g., 10 h of light/day). Earlier studies revealed that NR hamsters will exhibit winter-type responses when exposed to short photoperiod if they are given free access to a running wheel. The present study tested the hypothesis that this locomotor activity-induced reversal of phenotype is dependent on the IGL. Male NR hamsters underwent destruction of the IGL prior to being housed in short day lengths in cages equipped with running wheels. Activity rhythms were monitored for 8 weeks, after which time pelage response and paired testes weights were obtained. In contrast to sham-operated NR animals given access to running wheels, IGL-ablated animals showed no increase in the duration of nocturnal running wheel activity and became active later in the night than sham-lesioned animals. Lesioned animals also failed to exhibit the typical short photoperiod-induced gonadal regression and pelage molt. The results implicate the IGL in the mechanism by which running wheel activity can influence photoperiodic responses.  相似文献   

18.
Many nontropical rodent species rely on photoperiod as a primary cue to coordinate seasonally appropriate changes in physiology and behavior. Among these changes, some species of rodents demonstrate increased aggression in short, "winter-like" compared with long "summer-like" day lengths. The precise neuroendocrine mechanisms mediating changes in aggression, however, remain largely unknown. The goal of the present study was to examine the effects of photoperiod and exogenous melatonin on resident-intruder aggression in male Syrian hamsters (Mesocricetus auratus). In Experiment 1, male Syrian hamsters were housed in long (LD 14:10) or short (LD 10:14) days for 10 weeks. In Experiment 2, hamsters were housed in long days and half of the animals were given daily subcutaneous melatonin injections (15 microg/day in 0.1 ml saline) 2 h before lights out for 10 consecutive days to simulate a short-day pattern of melatonin secretion, while the remaining animals received injections of the vehicle alone. Animals in both experiments were then tested using a resident-intruder model of aggression and the number of attacks, duration of attacks, and latency to initial attack were recorded. In Experiment 1, short-day hamsters underwent gonadal regression and displayed increased aggression compared with long-day animals. In Experiment 2, melatonin treatment also increased aggression compared with control hamsters without affecting circulating testosterone. Collectively, the results of the present study demonstrate that exposure to short days or short day-like patterns of melatonin increase aggression in male Syrian hamsters. In addition, these results suggest that photoperiodic changes in aggression provide an important, ecologically relevant model with which to study the neuroendocrine mechanisms underlying aggression in rodents.  相似文献   

19.
Two different experimental models were used to test if a temporal relationship exists between the rhythm of adrenal steroid secretion and the vulnerability of the hamster reproductive system to short photoperiod exposure or to the daily afternoon injection of melatonin. In the first experiment adrenalectomized hamsters were implanted with a Cortisol pellet to provide a sustained, rather than rhythmic, level of the hormone. The animals were either placed in short photoperiod or given a daily afternoon melatonin injection. In both cases the gonads underwent atrophy. In the second experiment adrenalectomized hamsters were given a Cortisol injection either in the morning (approx. 8 hr before the subsequent afternoon injection of melatonin) or in the afternoon (approx. 1 hr before the subsequent melatonin injection). Measurements of testicular and accessory organ weights 7 weeks later indicated regression of the reproductive system in both the groups when compared with their appropriate controls. Depressed levels of plasma LH. PRL, testosterone and thyroxine (T4) in these animals confirmed the melatonin induced gonadal collapse. The results suggest that apparently there is no temporal correlation between the rhythm of secretion of the adrenal steroids and the responsiveness of the reproductive system to late afternoon injection of melatonin. Interestingly, all the adrenalectomized Cortisol injected control animals (not receiving melatonin) had depressed plasma LH and PRL while the testicular weights and plasma testosterone titers remain unaffected.  相似文献   

20.
《Chronobiology international》2013,30(9):1206-1215
The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within ~2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4?h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号