首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regrowth from wounded stipe explants of Sargassum can be divided into four stages based on cytological changes. The first stage involves changes associated with the wound reactions and the formation of a wound epidermis. The second stage includes the formation of a well defined medullary pit with meristematically active cells around its periphery. Several “bud primordia” are also formed which begin to grow by cell division towards the wound surface. The third stage involves a period of internal tissue differentiation in the “bud primordia” such that mitotic activity is localized in the bud tip and the basal cells grow by cell elongation. The fourth stage marks a major change in the morphology of the regeneration branch from a tubular structure to that of a flattened blade. This change in morphology is preceded by the formation of an apical pit around which the flattened growth appears to be organized.  相似文献   

2.
Yukio Kato  Shigeru Kawahara 《Planta》1972,107(2):111-120
Summary Isolated leaves, leaf fragments and pieces of the midrib portion devoid of lamina, of Heloniopsis orientalis were grown on an inorganic nutrient medium without organic nutrients and growth regulators in order to investigate their regenerative ability. Bud formation in intact, attached leaves occurs only at the tip, in isolated leaves at the tip and the base, whereas leaf fragments cut transversely at a distance from the tip and isolated midrib pieces form numerous shoot buds in a random distribution. Lamina fragments lacking midrib frequently fail to regenerate even after a long time of culture. It is suggested that endogeneous growth regulators in the leaf, especially the vascular tissues, play an important role in bud initiation. Very young leaves of Heloniopsis are capable forming buds and roots when isolated from the mother plants.  相似文献   

3.
4.
Cessation of renal morphogenesis in mice   总被引:2,自引:1,他引:1  
The kidney develops by cycles of ureteric bud branching and nephron formation. The cycles begin and are sustained by reciprocal inductive interactions and feedback between ureteric bud tips and the surrounding mesenchyme. Understanding how the cycles end is important because it controls nephron number. During the period when nephrogenesis ends in mice, we examined the morphology, gene expression, and function of the domains that control branching and nephrogenesis. We found that the nephrogenic mesenchyme, which is required for continued branching, was gone by the third postnatal day. This was associated with an accelerated rate of new nephron formation in the absence of apoptosis. At the same time, the tips of the ureteric bud branches lost the typical appearance of an ampulla and lost Wnt11 expression, consistent with the absence of the capping mesenchyme. Surprisingly, expression of Wnt9b, a gene necessary for mesenchyme induction, continued. We then tested the postnatal day three bud branch tip and showed that it maintained its ability both to promote survival of metanephric mesenchyme and to induce nephrogenesis in culture. These results suggest that the sequence of events leading to disruption of the cycle of branching morphogenesis and nephrogenesis began with the loss of mesenchyme that resulted from its conversion into nephrons.  相似文献   

5.
Brownea ariza Benth. (Leguminosae: Caesalpinioideae) shows early shoot tip abortion and subsequent renewal growth from the pseudoterminal bud. This species is unusual in that the entire shoot system is formed before flushing from the bud occurs, shoot tip abortion occurs during flushing, and the aborting portion contains three to six leaves as well as primordial structures varying from hood to peg shape. This study focused on the morphological changes from initiation of scale and foliage leaf primordia in the “resting” renewal bud through bud elongation to flushing and bud abortion. Scanning electron microscopy revealed that embryonic scale leaves are hood-shaped while foliage leaf primordia show early segmentation into leaflets and stipules. No transitional stages were observed. Bud scales and foliage leaves show opposite developmental trends. In bud scales, length at maturity increases from first to last formed, while length decreases in sequentially formed foliage leaves. Early in leaf development the stipules keep pace with the elongation of the rachis. When the bud reaches about one half of its final length the leaf rachis begins to exceed the lengths of its stipules. This young rachis terminates in a distinct mucro that persists until maturity at which time it abscises. Growth patterns indicate that mucro and rachis are a single developmental unit. The early abortion of a shoot tip containing several leaves cannot be easily rationalized. Previous suggestions have involved maintenance of form and ecological adaptation. We add the possibility of elimination of cell progeny encumbered by mutations. From this and other studies of this group, it is clear that at maturity leaves of different species may look alike, e.g., Hymenaea and Colophospermum are bifoliolate; Brownea, Saraca, and others are multifoliolate. However, early stages of leaf ontogeny are quite diverse and may be of systematic value, since these early differences are lost or masked by later development.  相似文献   

6.
Investigation of the development and organography of the shoot systems of Microgramma vacciniifolia and M. squamulosa was undertaken for the purpose of determining: (1) the features of shoot growth that are responsible for the distinctive vining character of these epiphytic ferns; and (2) the mode of origin of branches and their contrast with leaf initiation. Shoots of both species are dorsiventral and plagiotropic (i.e., parallel to the substrate) in habit. Since the shoot apical meristem is radial in transectional symmetry, shoot dorsiventrality in Microgramma is a postgenital or secondary developmental event, and its inception is related to the initiation of lateral appendages. Leaves and buds arise in a distichous phyllotaxis and occupy opposite and alternating positions on the dorsal surfaces and flanks of the rhizome. Endogenous roots are initiated in two rows from the ventral surface of the stem, in the vicinity of the rhizome meristem; however, they do not emerge from the rhizome until some distance behind the tip and do not elongate until the region of substrate contact. We conclude that the vining nature of this fern rhizome is a result of precocious internodal elongation and the concomitant delay of leaf and bud expansion in the region of stem elongation. In addition, observation of branch origin confirms previous suggestions that branching in Microgramma is strictly lateral and extra-axillary and not a dichotomous derivative as proposed by some workers. Leaf and bud primordia differ not only in the nature of their respective vascular supplies but also in their actual course of initiation. In the case of the leaf, the primordium is precociously emergent and exhibits a lenticular apical cell at its summit when it is only one plastochron removed from the flanks of the apical meristem. By contrast, initials of the bud primordium divide less actively and remain in a sunken position for at least 5–6 plastochrons; only when the bud apex becomes expanded and emergent does a tetrahedral apical cell become recognizable at the tip of the bud promeristem. Because of the distinctive pattern of branch and leaf origin, as well as the lack of adventitious and phyllogenous origin of branch primordia, we suggest that the shoot of Microgramma is a useful test organism for the re-examination of the problem of leaf and bud determination in the ferns.  相似文献   

7.
Summary Cytokinin stimulates caulonemata ofFunaria to undergo an asymmetric division leading to the gametophore. The earliest detectable event is a small protuberance at the distal portion of the cell accompanied by the reorganization of the underlying organelles into a polarized distribution reminiscent of a tip growing cell. Dictyosomes and associated vesicles accumulate in the protuberance directly beneath the plasma membrane with mitochondria subjacent to the vesicular layer. Endoplasmic reticulum lies beneath the mitochondrial zone directly above the large central vacuole, while chloroplasts are outside the bud. As development continues the bud elongates causing the outer cell wall to exfoliate. During the above events the nucleus migrates toward the bud site concomitant with an increase in the number of microtubules between the nucleus and the base of the outgrowth. Nucleoli, extruded from the nucleus during a previous division, persist as diffuse fragments within the protuberance. Upon reaching the bud site, division occurs with the developing phragmoplast being initiated distal to the caulonema tip cell. The former polarized distribution of the cytoplasm is altered as mitochondria, chloroplasts and small vacuoles become evenly dispersed throughout the cytoplasm; dicytosomes and endoplasmic reticulum occupy a cortical position. These events indicate a change from 2-D tip growth to 3-D diffuse growth. To quantify the ultrastructural changes associated with bud formation we performed a morphometric analysis of cells in various stages of budding. The relative volumes of dictyosomes and vesicles adjacent to the bud apex decrease during bud development coincident with an increase in these organelles in lower portions of the cytoplasm. Mitochondria and chloroplasts follow this same pattern although their highest relative volumes initially are 4 m from the bud apex and outside the bud site, respectively. These data, as well as density profile topographic maps for vesicle fractions, support the contention that cytokinin induces a change in morphological symmetry and polarity in the fine structure ofFunaria.  相似文献   

8.
Two new species of Pleonotoma Miers (Bignonieae, Bignoniaceae) from Brazilian Amazonia are described and illustrated: Pleonotoma fissicalyx B. M. Gomes & Proen?a and P. longiflora B. M. Gomes & Proen?a. P. fissicalyx is characterised by foliaceous prophylls of the axillary bud, 3-ternate leaves, a large number of short racemes concentrated at the apex of the flowering branch with many visible pedicel scars, a laterally fissured, almost spathaceous calyx, and a small, narrow hypocrateriform corolla with subexserted anthers; the fruits are unknown. P. longiflora is characterised by the combination of weakly tetragonal branchlets with unribbed angles, non-foliaceous, flat, rounded prophylls of axillary bud with an eccentric tip, 2-ternate leaves, broad axillary racemes, an elongate tubular calyx and a hypocrateriform corolla up to 12 cm long; its inclusion within Pleonotoma is confirmed by molecular phylogeny.  相似文献   

9.
The first fossil streblid, Enischnomyia stegosoma n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae), is described from Dominican amber. Placed in the subfamily Nycterophiliinae Wenzel, 1966, which includes two New World extant genera, Nycterophilia Ferris, 1916 and Phalconomus Wenzel, 1984 (=Phalcophila Wenzel, 1976), the male specimen of E. stegosoma is characterised by the following features: a laterally compressed body, well-developed two-segmented antennae with the scape fused with the head, a tubular pedicel with an annulated basal portion and swollen apical portion bearing setae and bristles, a distinct flagellum with a dorsal boss bearing microsetae and a subterminal pectinate arista, a large tubular labium (proboscis) with the tip held upwards, eyes reduced to three facets, an expanded and flattened profemur, an anteriorly curved protarsus, and a well-developed wing with an entire distal margin. The possession of wings separates E. stegosoma from the species of Phalconomus, and the wing outline and venation, as well as the structure of the antennae and palps, distinguish it from species of Nycterophilia.  相似文献   

10.
The mechanism of ABA-induced callus formation was studied in sterile bud cultures of Citrus [Citrus sinensis (L.) Osbeck] on defined media. ABA was found to promote callus formation in the abscission zone between the petiole and the branch while inhibiting bud growth. The promoting effect of ABA was dependent on the physiological state of the shoot from which buds were excised, and on the size of the explant. Callus formation was highest in autumn and summer (i.e. younger) buds, and lowest in older buds excised from previous summer flush. GA was only slightly active in promoting callus formation when applied separately, but showed a highly synergistic effect when applied with ABA: maximal callus formation was attained at a combination of 10?5M ABA and 10?6 MGA in the medium. Subcultures of ABA-induced callus revealed that ABA inhibited the growth of isolated subcultured callus, while IAA and kinetin, and especially GA, promoted its rapid proliferation. A general decrease in protein synthesis was found in the abscission zone during the first 5 days of induction, while total protein content changed only slightly. The results suggest that ABA-induced callus formation in Citrus bud explants is a multiphasic phenomenon involving, at least, two stages: (1) activation of certain cells in the abscission zone by ABA, resulting in the formation of callus layers, and (2) subsequent proliferation of the callus tissue, which is dependent on the hormonal balance in the explant. This growth-promoting effect of ABA seems to be a general phenomenon in explants exposing a cut-surface.  相似文献   

11.
Hyphae of Gelasinospora reticulispora were cultured on corn meal agar in a growth tube at 25 ± 0.4°C under different light conditions. While the hyphal tip was growing, perithecia were not formed under continuous white light (ca. 2000 ergs cm?2 sec?1), but some perithecia were initiated in total darkness. However, when white light was given after a dark period, perithecial formation was greatly promoted. In these cases, perithecial formation occurred in older portion of the culture (the portion nearest the point of inoculation) at first, and then gradually spread to the younger portion. Immediately after the tip of hyphae reached the other end of the growth tube, perithecia were induced in the youngest portion of the hyphae irrespective of the photoconditions; then formation proceeded toward the older portion. This induction was not age-dependent, because in growth tubes with different lengths, perithecia always became visible ca. 24 hr after the tip of hyphae reached the other end of growth tube. The photoinhibitory effect was no longer observed thereafter, but photopromotive effect was still evident.  相似文献   

12.
Excavation to a depth of 1 m of a 3 × 4 m portion of a clone of Quercos gambelii revealed the presence of a massive underground system of lignotubers, interconnecting rhizomes and roots. Lignotubers comprised the greatest proportion (72%) of the total below ground biomass (81 t/ha). Lignotubers are distinctive in appearance: they are an enlarged stemlike structure with numerous clusters of adventitious buds on the surface. Anatomically, they are comparable to the above ground stems with growth rings. Lignotubers are lobed and distorted, giving the appearance of a burl. Rhizomes are round to I-beam in shape with a star-shaped pith, distinct annual rings, bud traces, and branch gaps. There were also clusters of adventitious buds on rhizomes, although not as dense as those on the lignotubers. Roots are oval in cross section with discernible growth rings, no pith, and no bud traces.  相似文献   

13.
Hyphae of the fungus Pythium ultimum extend by tip growth. The use of surface markers demonstrates that cell expansion is limited to the curved portion of the hyphal apex. Growing and non-growing regions are reflected in internal organization as detected by light and electron microscopy. The young hypha consists of three regions: an apical zone, a subapical zone and a zone of vacuolation. The apical zone is characterized by an accumulation of cytoplasmic vesicles, often to the exclusion of other organelles and ribosomes. Vesicle membranes are occasionally continuous with plasma membrane. The subapical zone is non-vacuolate and rich in a variety of protoplasmic components. Dictyosomes are positioned adjacent to endoplasmic reticulum or nuclear envelope, and vesicles occur at the peripheries of dictyosomes. A pattern of secretory vesicle formation by dictyosomes is described which accounts for the formation of hyphal tip vesicles. Farther from the hyphal apex the subapical zone merges into the zone of vacuolation. As hyphae age vacuolation increases, lipid accumulations appear, and the proportional volume of cytoplasm is reduced accordingly. The findings are integrated into a general hypothesis to explain the genesis and participation of cell components involved directly in hyphal tip growth: Membrane material from the endoplasmic reticulum is transferred to dictyosome cisternae by blebbing; cisternal membranes are transformed from ER-like to plasma membrane-like during cisternal maturation; secretory vesicles released from dictyosomes migrate to the hyphal apex, fuse with the plasma membrane, and liberate their contents into the wall region. This allows a plasma membrane increase at the hyphal apex equal to the membrane surface of the incorporated vesicles as well as a contribution of the vesicle contents to surface expansion.  相似文献   

14.
Micro-CT scanning techniques were used to investigate fine-scale variation in porosity along branch tips of Acropora pulchra. Porosity variation is a result of progressive thickening of skeletal elements away from the apical tip of branches, rather than changes in the spacing of skeletal elements. A linear fit was found to describe the relationship between distance along the tip and both porosity and skeletal thickness. The slope of the line obtained may relate to branch extension rates and allow retrospective data to be obtained from Acropora specimens. Skeletal morphology examined by 2D and 3D imaging shows a progressive gradation in thickness occurring in the axial corallite wall and thickness changes at a site of incipient branch formation. The application of the micro-CT technique to museum and fossil specimens is illustrated.  相似文献   

15.
Croes, A. F., Creemers-Molenaar, T., van den Ende, G., Kemp,A. and Barendse, G. W. M. 1985. Tissue age as an endogenousfactor controlling in vitro bud formation on explants from theinflorescence of Nicotiana tabacum L.—J. exp. Bot. 36:1771–1779. The in vitro formation of generative buds was studied on explantsfrom flower and fruit stalks and from internodes of the floralramifications of tobacco. A floral gradient was found to existalong the axis of the branch. The gradient concerns the numberof flower buds formed in vitro and is present in both typesof tissues. The number of flower buds is greater on tissuesfrom the apical than from the basal portion of the branch. Thecapacity to generate these buds is largely determined by tissueage at the moment of the excision. Consequently, the gradientmoves along the axis during the outgrowth of the inflorescence. The alternative possibility that some apex-derived stimuluspredetermines the morphogenetic capacity of the tissue priorto excision is excluded by the observation that the gradientremains virtually unaltered if the apex is removed one weekbefore the onset of culturing. Auxin affects the floral gradient Increasing the auxin concentrationin internode tissue culture causes a steeper gradient of flowerbud generation by almost completely abolishing bud formationon older tissues. Key words: Auxin, flower buds, gradient, tissue culture, tobacco  相似文献   

16.
Cotyledon explants of ginseng (Panax ginseng C. A. Meyer) produced somatic embryos directly on medium without growth regulators, with 89% of the explants forming somatic embryos. Cytokinin treatment greatly suppressed somatic embryo formation but stimulated the direct formation of adventitious buds. BAP treatment was more effective than the kinetin treatment for adventitious bud formation. Auxin (0.05 mg/l IBA) in combination with cytokinin enhanced adventitious bud formation, with the highest frequency, 40%, at 0.05 mg/l IBA and 5 mg/l BAP. Adventitious buds were mainly formed near the distal portion of the cotyledons, while somatic embryos were formed near the proximal excised margins. Shoots were developed from adventitious buds after transfer to MS medium with 10 mg/l GA3. Root formation from the shoots was obtained after the shoots were transferred to half-strength MS medium with auxin (IAA). When the plants derived from adventitious buds were transferred to greenhouse soil, 36% were successfully acclimatized. Received: 7 November 1997 / Revision received: 12 January 1998 / Accepted: 7 February 1998  相似文献   

17.
Summary Explants derived from adventitious buds, rhizomes, stems, and leaves of a medicinal plant, Polygonatum cyrtonema, were studied for plantlet regeneration, and only adventitious bud explants were able to be regenerated into plantlets. Regeneration was also accompanied by the formation of rhizome-like tissue, the medicinal portion of the plant. The optimum hormone combination for plantlet regenertion was 4.44 μM benzyladenine plus 2.26 μM 2,4-dichlorophenoxyacetic acid, at which new adventitious buds were obtained from 96.6% of the adventitious bud explants, with an average of 5.2 buds per explant. The best medium for root induction was half-strength Murashige and Skoog medium with 4.57 μM α-naphthaleneacetic acid, as 92% of regenerated buds rooted. Regenerated plantlets were successfully transferred to a greenhouse with 86% survival. Histological observation indicated that new adventitious buds originated from the superficial meristematic cell cluster of the granular callus induced from adventitious bud explants via organogenesis.  相似文献   

18.
Tucker, Shirley C. (Northwestern U., Evanston, III.) Development and phyllotaxis of the vegetative axillary bud of Michelia fuscata . Amer. Jour. Bot. 50(7): 661–668. Illus. 1963.—The vegetative axillary buds of Michelia fuscala are dorsiventrally symmetrical with 2 ranks of alternately produced leaves. The direction of the ontogenetic spiral in each of these buds is related both to the symmetry of the supporting branch and to the position of the bud along the branch. On a radially symmetrical branch, all the axillary buds are alike—all clockwise, for example. But in a dorsiventrally organized branch the symmetry alternates from clockwise in 1 axillary bud to counterclockwise in the next bud along the axis. Leaf initiation and ontogeny of the axillary apical meristem conform with those of the terminal vegetative bud. The axillary bud arises as a shell zone in the second leaf axil from the terminal meristem. During this process the axillary apex develops a zonate appearance. The acropetally developing procambial supply of the axillary bud consists wholly of leaf traces. At the nodal level the bud traces diverge from the same gap as the median bundle trace of the subtending leaf. Only the basal 1–2 axillary buds which form immediately after the flowers elongate each year, while the majority remains dormant with 3 leaves or fewer.  相似文献   

19.
20.
 The persistence of large epicormic shoots is one of the main factors that reduces timber quality and value in Quercus petraea. The early phases of epicormic shoot formation, i.e. the initiation of the epicormic buds, their survival and their proliferation over the years, are not clearly understood. In the present work, we studied the initiation of the axillary buds giving rise to epicormic buds and shoots, and followed their behaviour during the first 5 years using both scanning electron microscopy and light microscopy. Two types of proventitious epicormic buds have been identified. The first type has small axillary buds associated with the rings of bud-scale scars which are found at the base and tip of each growth unit. These buds are made of a terminal meristem surrounded only by scales; no leaf primordium is detected. During the second and third years of epicormic life, meristematic areas appear in the scale axil. Progressively, the meristematic areas organize into secondary bud primordia composed solely of the terminal meristem surrounded by scales. The second type of epicormic bud has secondary buds produced by a large axillary bud when this large bud either developed into a shoot or partially abscised. The epicormic potential in Q. petraea is characterized by a balance between the epicormic buds in apparent rest, enclosing meristematic areas and secondary bud primordia, and their mortality over the years. Received: 22 January 1998 / Accepted: 8 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号