首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Restriction maps have been constructed for the colicinogenic plasmids (ColA, ColD, and ColK. Their regions of homology with the ColE1 plasmid and its deletion derivative pAO3 carrying the region responsible for autonomous replication of ColE1 plasmid were determined by means of blotting hybridization and heteroduplex analysis. The plasmids ColA, ColD, and ColK were shown to contain DNA fragments homologous to the region of ColE1 involved in the regulation of replication.  相似文献   

3.
Summary ColA is a colicinogenic plasmid of 6.72 kb. It is compatible with ColE1 but not with ColK. Transposon insertion mutagenesis as well as complementation studies have been carried out to investigate the location of the various functional regions of this plasmid. Four independent ColA::Tn1 and one ColA::Tn3 plasmids were isolated and the locations of insertions were determined. From these plasmids, six different deletion mutants were constructed. In addition, various restriction fragments of ColA have been cloned into pUC8 to carry out complementation studies. We have thus confirmed the location of the DNA regions involved in colicin production, colicin release and immunity function. The DNA region involved in conjugal mobility promoted by R64 drd11 has been identified and we have demonstrated that the ColE1 mobility proteins can act in trans on the bom (basis of mobility) site of ColA. The location of this site, as well as the region involved in stable maintenance of ColA, have also been determined. These results are discussed with regard to the homology in nucleotide sequence between ColA and ColE1.  相似文献   

4.
Summary The complete nucleotide sequence of the colicinogenic plasmid ColA has been determined. The plasmid DNA consists of 6720 bp (molecular weight 4.48×106). Fifteen putative biological functions have been identified using the functional map previously determined. These include 11 genes and 3 DNA sites. Nine genes encode proteins of which 3 have been fully characterized. The replication region of ColA coding for RNAI and RNAII is highly homologous to that of ColE1 andClo DF13. The same holds true for the site-specific recombination region containing palindromic symmetry and involved in stable maintenance of the plasmids. A high percentage of homology has been detected for putative mobility proteins encoded by ColA and ColE1. The exclusion proteins are also highly homologous.  相似文献   

5.
Specificity of small multicopy colicinogenic plasmids ColA, ColD, ColE2 and ColK replication has been compared with the one of ColE1 plasmid. Copy number for these plasmids per host cell has been estimated under the normal conditions of cellular growth and under the conditions of chloramphenicol-inhibited growth. DNA polymerase I and dnaB protein, an obligatory component for elongation step in replication, have been shown to be necessary for the plasmids replication. Initiation of plasmids replication has been demonstrated to be independent of dnaA and dnaC proteins. Replication of plasmid ColE2, being similar in its main features to replication of other plasmids from this group, has an important distinction. It requires de novo protein synthesis implying that ColE2 replicon may be different from ColA, ColD, ColK, ColE1 replicons. Thus study of the inducible A, D, K, El colicin synthesis coded by the corresponding plasmids has revealed the similarity regulation of genes, determining the synthesis of each of the mentioned colicins.  相似文献   

6.
Two par regions were localized within the structure of a small colicinogenic plasmid ColA. One of them functions at the expense of plasmid multimere resolution. Analysis of the nucleotide sequence of the region revealed the existence of essential homology with the par locus of plasmid ColE1. As compared to E. coli C600, the function of multimere forms' resolution of plasmid DNA in E. coli C is reduced or absent due to par regions of the ColE1 type. Par regions of various degrees of homology with the par locus of ColE1 were localized by Southern hybridization within the structure of colicinogenic plasmids ColN and ColD. The stabilization of the colicinogenic plasmids is believed to be also determined by the functioning of genes connected with the synthesis and action of colicin.  相似文献   

7.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

8.
The initiation stage of ColE1-type plasmid replication was reconstituted with purified protein fractions from Escherichia coli. The reconstituted system included DNA polymerase I, DNA ligase, RNA polymerase, DNA gyrase, and a discriminating activity copurifying with RNAase H (but free of RNAase III). Initiation of DNA synthesis in the absence of RNAase H did not occur at the normal replication origin and was non-selective with respect to the plasmid template. In the presence of RNAase H the system was selective for ColE1-type plasmids and could not accept the DNA of non-amplifiable plasmids. Electron microscopic analysis of the reaction product formed under discriminatory conditions indicated that origin usage and directionally of ColE1, RSF1030, and CloDF13 replication were consistent with the normal replication pattern of these plasmids. It is proposed that the initiation of ColE1-type replication depends on the formation of an extensive secondary structure in the origin primer RNA that prevents its degradation by RNAase H.  相似文献   

9.
Nucleotide sequences of E. coli tRNAs and RNA I or RNA II (controlling replication of ColE1 plasmids) were compared using the computer. The homology between some of these molecules is over 60%. The distribution of homologous nucleotides among the functional elements (stems and loops) of either RNA I or RNA II and the tRNAs molecules was studied. It was found that the homologous domains are located mainly in the loop regions of RNA I or RNA II. A consensus sequence, the nonanucleotide AGUUGGUAG, was discovered in loop II of RNA I and in the dihydrouridylic loop of tRNAs showing homology with RNA I. Based on this observation, a hypothesis was drawn for a possible role of the tRNAs in the regulation of plasmid DNA replication.  相似文献   

10.
The region containing the origin and regulatory sites for replication as well as the immunity gene (iaa) have been localized on the plasmid ColA-CA31. The region involved in replication functions of ColA can be hybridized with that of ColE1. It is located between 1 and 1 kb on the plasmid map previously published (Morlon et al. 1982a). A 0.50 Kb HincII fragment of ColA can be weakly hybridized to the ColE1 immunity region. This fragment contains iaa since directed in vitro mutagenesis at an internal restriction site can abolish the immunity to colicin A; however, it does not contain the entire iaa. Knowing the localization of regions involved in autonomous DNA replication and immunity, a mini-ColA plasmid was constructed that contains these two regions. The mini-ColA of 2.8 Kb can be amplified in the presence of chloramphenicol and confers the immunity to transformants. It thus constitutes a useful cloning vector. Expression of ColA and of the various constructed plasmids in the maxicell system suggests that the immunity protein has a molecular weight of about 18-20 Kd.  相似文献   

11.
Summary Clorobiocin, an inhibitor of the gyrB subunit of DNA gyrase, was used for the curing of some Escherichia coli plasmids. Of the plasmids studied, ampicillin resistant R28K and a miniplasmid derived from R1 drd-19 were effectively eliminated. We also succeeded in eliminating the ColA factor from E. coli strain B834 (pBS103), which was resistant to the effect of currently used curing agents. Although a derivative of ColE1-pBR322 was effectively cured by clorobiocin, the ColE1-plasmid was resistant to its effect. The ColV plasmid determining virulence was effectively eliminated.  相似文献   

12.
13.
14.
15.
We isolated three Escherichia coli suppressor strains that reduce the copy number of a mutant ColE1 high-copy-number plasmid. These mutations lower the copy number of the mutant plasmid in vivo up to 15-fold; the wild-type plasmid copy number is reduced by two- to threefold. The suppressor strains do not affect the copy numbers of non-ColE1-type plasmids tested, suggesting that their effects are specific for ColE1-type plasmids. Two of the suppressor strains show ColE1 allele-specific suppression; i.e., certain plasmid copy number mutations are suppressed more efficiently than others, suggesting specificity in the interaction between the suppressor gene product and plasmid replication component(s). All of the mutations were genetically mapped to the chromosomal polA gene, which encodes DNA polymerase I. The suppressor mutational changes were identified by DNA sequencing and found to alter single nucleotides in the region encoding the Klenow fragment of DNA polymerase I. Two mutations map in the DNA-binding cleft of the polymerase region and are suggested to affect specific interactions of the enzyme with the replication primer RNA encoded by the plasmid. The third suppressor alters a residue in the 3'-5' exonuclease domain of the enzyme. Implications for the interaction of DNA polymerase I with the ColE1 primer RNA are discussed.  相似文献   

16.
Mutations affecting a region of the Escherichia coli RNA polymerase have been isolated that specifically reduce the copy number of ColE1-type plasmids. The mutations, which result in a single amino acid alteration (G1161R) or a 41-amino acid deletion (Delta1149-1190) are located near the 3'-terminal region in the rpoC gene, which encodes the largest subunit (beta ') of the RNA polymerase. The rpoC deletion and the point mutation cause over 20- and 10-fold reductions, respectively, in the copy number of ColE1. ColE1 plasmid numbers are regulated by two plasmid-encoded RNAs: RNA II, which acts as a preprimer for the DNA polymerase I to start initiation of replication, and RNA I, its antisense inhibitor. Altered expression from the RNA I and RNA II promoters in vivo was observed in the RNA polymerase mutants. The RNA I/RNA II ratio is higher in the mutants than in the wild-type strain and this is most probably the main reason for the reduction in the ColE1 copy number in the two rpoC mutants.  相似文献   

17.
18.
Plasmid pWQ799 is a 6.9-kb plasmid isolated from Salmonella enterica serovar Borreze. Our previous studies have shown that the plasmid contains a functional biosynthetic gene cluster for the expression of the O:54 lipopolysaccharide O-antigen of this serovar. The minimal replicon functions of pWQ799 have been defined, and a comparison with nucleotide and protein databases revealed this replicon to be virtually identical to ColE1. This is the first report of involvement of ColE1-related plasmids in O-antigen expression. The replicon of pWQ799 is predicted to encode two RNA molecules, typical of other ColE1-type plasmids. RNAII, the putative replication primer from pWQ799, shares regions of homology with RNAII from ColE1. RNA1 is an antisense regulator of DNA replication in ColE1-related plasmids. The coding region for RNAI from pWQ799 shares no homology with any other known RNAI sequence but is predicted to adopt a secondary structure characteristic of RNAI molecules. pWQ799 may therefore represent a new incompatibility group within this family. pWQ799 also possesses cer, rom, and mob determinants, and these differ minimally from those of ColE1. The plasmid is mobilizable in the presence of either the broad-host-range helper plasmid pRK2013 or the IncI1 plasmid R64drd86. Mobilization and transfer of pWQ799 to other organisms provides the first defined mechanism for lateral transfer of O-antigen biosynthesis genes in S. enterica and explains both the distribution of related plasmids and coexpression of the O:54 factor with other O-factors in different Salmonella serovars. The base composition of the pWQ799 replicon sequences gives an average percent G+C value typical of Salmonella spp. In contrast, the percent G+C value is dramatically lower with rfb0:54, consistent with the possibility that the cluster was acquired from an organism with much lower G+C composition.  相似文献   

19.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

20.
Plasmids containing a ColE1 origin of replication are widely used for cloning purposes in Escherichia coli. Among the host factors that affect the copy number of ColE1 plasmids is the E. coli protein poly(A) polymerase I (PAP I), which regulates the intracellular level of RNA I, a ColE1-encoded negative regulator of plasmid replication. In strains that lack PAP I, RNA I levels are elevated, resulting in reduced levels of ColE1 plasmids in the cell. PAP I is encoded by the gene pcnB. We devised a genetic approach, based on the identification of multicopy suppressor clones, to identify trans-acting factors that can help offset the ColE1 plasmid copy number defect in a pcnB (-) genetic background. Using this strategy, we identified suppressors that mapped to two regions of the E. coli chromosome. The suppressor activity of one of the chromosomal regions was localized to the rssB gene, a response regulator gene known to be involved in the turnover of the stationary-phase sigma factor, RpoS. The second suppressor maps to min 55.4 of the E. coli chromosome, and the factor responsible for the suppressor activity appears to be a novel RNA or protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号