首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of traces of substances by surface-sensitive techniques such as surface enhanced Raman spectroscopy (SERS) explores the interaction of adsorbed molecules on plasmonic surfaces to improve the limit of detection of analytes. This article is an overview about recent development in SERS substrates applied in the detection of organophosphorus pesticides on plasmonic surfaces (arrays of metal nanoparticles). The morphology, roughness, chemical functionalization degree, and aggregation level of plasmonic centers are some of the critical parameters to be controlled in the optimization of SERS signal from specific analytes.  相似文献   

2.
We report pH sensing for biological applications based on surface enhanced Raman scattering (SERS) from silver nanoparticles functionalized with 2-aminothiophenol (2-aminobenzenethiol, 2-ABT). pH-dependent SERS spectra of the attached 2-ABT molecules enable one to sense the pH over the range of 3.0-8.0. We have performed the first demonstration of SERS detection in living cells kept in different pH buffer solutions and show that the pH sensitivity is retained in that case. Thus, the nanoparticles can be used as probes delivering spatially localized chemical information from biological environments and provide a new way to monitor chemical changes at cellular level.  相似文献   

3.
The controlled tuning of interparticle distance at the nanoscale level is a major challenge for nanofabrication of surface-enhanced Raman scattering (SERS) active clusters and their application to molecular sensing. In fact, the geometrical properties of the narrow gaps between nanoparticles play a key role in determining the local field enhancement (and therefore, the SERS enhancement factor) and the spatial enhancement distribution in the gap region. Besides, very short interparticle distances may block the access of the analyte to the hot zone. In this paper, we report the synthesis of silver colloid NP clusters with interparticle distances fine tuned in the ≤2 nm range, by exploiting the chemical properties of linear α,ω-aliphatic diamines as molecular linkers with varying chain length. The bifunctional diamines also form intermolecular cavities within their self-assembled monolayers, suitable to host molecular analytes for nanosensing applications, as evidenced by SERS detection of organochlorine insecticides at the trace level. In this regard, the extension of the aliphatic chain played a crucial role in determining the SAM conformation and thus the final sensitivity of the functionalized SERS substrate.  相似文献   

4.
Nanoparticles internalized by cells are valuable probes for bioimaging. In particular, nanoparticles can be detected in “biological transmission window,” i.e., near infrared region. Here, we report a preparation of biotargeting diethylthiatricarbocyanine iodide (DTTC)-functionalized gold nanorods, utilized for detection of malignant cells. These biotargeting DTTC-functionalized gold nanorods are efficiently internalized into cultured cells and can serve as probes for surface-enhanced Raman scattering (SERS) and dark-field imaging. The robust SERS signal from malignant cells has clearly demonstrated a signature peak of DTTC in the presence of our formulation. A short acquisition time, we used in this experiment, is able to exclude bulk of Raman signal from natural cellular constituents. This signature peak will be a key of identifying cancer due to cancer-specific property of biotargeted molecule. The results are leading to promising real-time cancer detection. In addition, these multimodal probes demonstrated low toxicity in cell viability studies which enables a broad range of multiplex imaging applications.  相似文献   

5.
Biochips are a rapidly increasing research field, driven by the versatility of sensing devices and the importance of their applications. The regular approaches for creating biochips and for reading them suffer from some limitations, motivating development of miniature biochips and label-free formats. To push forward these challenges, we have chosen to combine the methods of printing of droplets of synthetic receptors by pipettes or nanofountain pens with detection by Raman spectroscopy or its surface-assisted plasmon variant, namely, surface-enhanced Raman spectroscopy (SERS). The selected receptors included molecularly imprinted polymers (MIPs), produced by polymerization of functional and cross-linking monomers around a molecular template, the β-blocking drug propranolol. The measured Raman and SERS spectra of the MIP constituents enabled identification of the template presence and consequently chemical imaging of individual and multiple dots in an array. This concept, combining nanolithography techniques with SERS paves the road toward miniaturized arrayed MIP sensors with label-free, specific and quantitative molecular recognition.  相似文献   

6.
Gold nanoparticle-based surface-enhanced Raman scattering (SERS) probes have shown promise for disease detection and diagnosis. To improve their structural and functional stability for in vivo applications, we synthesized a colloidal SERS gold nanoparticle that encapsulates Raman molecules adsorbed on 60 nm gold with a nonthiol phospholipid coating. Transmission electron microscopy and Raman and UV spectroscopy validated its reproducibility and stability. This novel lipid-based SERS probe provides a viable alternative to the PEGylation and silica coating strategies.  相似文献   

7.
Yang  Aiping  Du  Luping  Dou  Xiujie  Meng  Fanfei  Zhang  Chonglei  Min  Changjun  Lin  Jiao  Yuan  Xiaocong 《Plasmonics (Norwell, Mass.)》2018,13(3):991-996

Gap mode surface-enhanced Raman spectroscopy (SERS) enables high enhancement of Raman signal. However, the polarization of excitation light shows great influence on the excitation of gap mode and hence on the Raman enhancement. Here, we propose a nanoparticle-on-film gap mode SERS accompanying with a new type of excitation source called as perfect radially polarized (PRP) beam. The PRP beam possesses a ring-shaped beam pattern that can be tuned to match the surface plasmon resonance angle under a tight focusing condition, hence improving greatly the excitation efficiency of surface plasmon polaritons, and eventually the sensitivity of gap mode SERS. Such kind of enhanced-Raman system with a PRP beam has a great potential on the applications such as single molecule Raman detection.

  相似文献   

8.
Surface-enhanced Raman scattering (SERS) takes advantage of the giant electromagnetic field enhancement provided by localized surface plasmons in metal nanoparticles to amplify the weak Raman scattering of the molecules. Optical fibers coated with noble metal nanoparticles can therefore be used as SERS-based sensors for remote detection of molecular species. In this article, we report on the development of an optical fiber SERS sensor capable to operate on a range of excitation wavelengths from the visible to the near-infrared. We introduce a quasistatic chemical etching protocol to engineer the tip shape and investigate the effects of the tip shape on the sensor performances.  相似文献   

9.
Multifunctional magnetic-plasmonic Fe(3)O(4)-Au core-shell nanoparticles (Au-MNPs) were prepared for simultaneous fast concentration of bacterial cells by applying an external point magnetic field, and sensitive detection and identification of bacteria using surface-enhanced Raman spectroscopy (SERS). We demonstrated that a spread of a 10 μL drop of a mixture of 10(5) cfu/mL bacteria and 3 μg/mL Au-MNPs on a silicon surface can be effectively condensed into a highly compact dot within 5 min by applying an external point magnetic field, resulting in 60 times more concentrated bacteria in the dot area than on the spread area without concentration. Surrounded by dense uniformly packed Au-MNPs, bacteria can be sensitively and reproducibly detected directly using SERS. The principle component analysis (PCA) showed that three different Gram-negative bacterial strains can be clearly differentiated. We also demonstrated that the condensed multifunctional Au-MNPs dot can be used as a highly sensitive SERS-active substrate and a limit of detection better than 0.1 ppb was obtained in detection of small molecules such as 4-mercaptopyrine. This novel platform significantly simplifies the concentration and detection process, which holds great promise for applications in food safety, environmental monitoring, medical diagnoses, and chemical and biological threat detections.  相似文献   

10.
鱼肉中磺胺类抗生素的表面增强拉曼光谱探测与分析   总被引:3,自引:0,他引:3  
本文以银溶胶为表面增强拉曼活性基底,实现了鱼肉中磺胺类抗生素的痕量检测。采用微波加热法制备银溶胶,比较了两种提取剂(氨水、乙酸乙酯)对鱼肉中抗生素的提取及探测效果。实验发现,鱼肉中的物质对抗生素检测有较大干扰,乙酸乙酯作为提取剂的效果要明显好于氨水。以银溶胶为基底,乙酸乙酯作为提取剂对两种限制使用的磺胺类抗生素(磺胺甲基嘧啶、磺胺二甲基嘧啶)检测的最低浓度皆为1 ppm,检测限分别为0.16 ppm、0.59 ppm。结果表明,利用此方法,可以实现鱼肉中一定浓度抗生素的检测,为实现水产品中抗生素的检测提供了实验基础。  相似文献   

11.
Conventionally Surface‐enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano‐roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.5% and 4.6%, respectively, which makes it more reliable than any existing SERS sensor platforms. In addition, our platform could improve the detection sensitivity owing to the increased interaction area between the guided light and the analyte, which is incorporated into the holes that runs along the length of the PCF. Numerical calculation established the significance of the interplay between light coupling efficiency and evanescent field distribution, which could eventually determine the sensitivity and reliability of the developed SERS active‐PCF sensor. As a proof of concept, using this sensor, we demonstrated the detection of haptoglobin, a biomarker for ovarian cancer, contained within the ovarian cyst fluid, which facilitated in differentiating the stages of cancer. We envision that with necessary refinements, this platform could potentially be translated as a next‐generation highly sensitive SERS‐active opto‐fluidic biopsy needle for the detection of biomarkers in body fluids.  相似文献   

12.

Surface-enhanced Raman scattering (SERS) enhancement factor (EF) is among the major applications of surface plasmon polaritons (SPP’s). In this work, the SERS EF of 1D rectangular and sinusoidal-shaped gold (Au) grating structures has been designed and optimized on Au film using COMSOL multiphysics (5.3a) RF module taking glass as substrate. The 1D grating models are simulated by variation in slit width ranging 200–600 nm while other parameters including periodicity of 700 nm and Au film thickness of 50 nm remained fixed. In order to study the several phenomena including enhanced optical transmission and SERS EF, the transmission and electric field spectra have been obtained from both types of grating structures. In agreement with fundamental plasmonic mode, the slit width of two-thirds of the periodicity found to be optimum for SERS EF. Remarkable value of SERS EF is obtained in the case of a sinusoidal Au grating device (6.4 × 109) which is calculated to be five times that of the rectangular grating (1.2 × 109). These devices are also the fingerprints of molecules, hence find applications in biosensing, pollution control, and chemical and food industry.

  相似文献   

13.
Surface-enhanced Raman scattering (SERS) is a particularly promising technique that has the potential to perform highly selective and sensitive in situ measurements of antibody-antigen reactions. This work describes the use of silver (Ag) colloids for immunoassay-based SERS detection of the fragile histidine triad (Fhit) protein. Alterations in Fhit protein expression have been associated with several human cancers, and, thus, the detection of Fhit protein is important because it can potentially be used as a cancer diagnostic biomarker, for both cancer detection and therapy.  相似文献   

14.
A simple and distinctive method for the ultrasensitive detection of Cu(2+) and Hg(2+) based on surface-enhanced Raman scattering (SERS) using cysteine-functionalized silver nanoparticles (AgNPs) attached with Raman-labeling molecules was developed. The glycine residue in a silver nanoparticle-bound cysteine can selectively bind with Cu(2+) and Hg(2+) and form a stable inner complex. Silver nanoparticles co-functionalized with cysteine and 3,5-Dimethoxy-4-(6'-azobenzotriazolyl)phenol (AgNP conjugates) can be used to detect Cu(2+) and Hg(2+) based on aggregation-induced SERS of the Raman tags. The addition of SCN(-) to the analyte can successfully mask Hg(2+) and allow for the selective detection of Cu(2+). This SERS-based assay showed an unprecedented limit of detection (LOD) of 10pM for Cu(2+) and 1pM for Hg(2+); these LODs are a few orders of magnitude more sensitive than the typical colorimetric approach based on the aggregation of noble nanoparticles. The analysis of real water samples diluted with pure water was performed and verified this conclusion. We envisage that this SERS-based assay may provide a general and simple approach for the detection of other metal ions of interest, which can be adopted from their corresponding colorimetric assays that have already been developed with significantly improved sensitivity and thus have wide-range applications in many areas.  相似文献   

15.
Teng  Yuanjie  Wang  Zhenni  Ren  Zeyu  Qin  Yanping  Pan  Zaifa  Shao  Kang  She  Yuanbin  Huang  Weihao 《Plasmonics (Norwell, Mass.)》2021,16(2):349-358

Water-insoluble molecules usually show poor surface-enhanced Raman scattering (SERS) signals, because they are hardly adsorbed on the surface of most commonly used SERS substrates, such as aqueous Ag or Au colloids. In this work, a highly sensitive and reproducible Ag monolayer film (Ag MLF) SERS substrate prepared by self-assembly of Ag nanoparticles (Ag NPs) on water/oil interface can realize the trace SERS detection of water-insoluble enrofloxacin. The positively charged phase transfer catalyst can transfer the negatively charged Ag nanoparticles in aqueous solution to the water/oil interface. At the same time, the water-insoluble enrofloxacin can also be attracted to the interface because of its lipophilic group. The type/volume of the oil phase and phase transfer catalyst and the vortex mixing time were all optimized to maximize the SERS effect of Ag MLF. Results showed that trace water-insoluble enrofloxacin can be identified by Ag MLF and its detection sensitivity was significantly improved. The proposed novel Ag MLF can be further applied to detect other water-insoluble molecules in SERS.

  相似文献   

16.
本文提出了复合表面等离子体(SPR)无标记检测及表面增强拉曼散射(SERS)的显微成像技术.证明了双模式SPR-SERS生物芯片的可实施性,即在同一芯片上实现了表面等离子共振和表面增强拉曼显微检测.鉴于双模芯片的高保真性,基于显微技术的高精准、多通道无标记检测技术有望在临床医学检测中得以广泛应用.  相似文献   

17.
Due to its fingerprint specificity and trace‐level sensitivity, surface‐enhanced Raman spectroscopy (SERS) is an attractive tool in bioanalytics. This review reflects the research in this highly interesting topic of the last 3–4 years. The detection of the SERS signature of biomolecules up to microorganisms and cells is introduced. Labeling using modified nanoparticles (SERS tags) is also introduced. In order to establish biomedical applications, SERS analysis is performed in complex matrices such as body fluids. Furthermore, the SERS technique is combined with other methods such as microfluidic devices for online monitoring and scanning probe microscopy (i.e. tip‐enhanced Raman spectroscopy, TERS) to investigate nanoscaled features. The present review illustrates the broad application fields of SERS and TERS in bioanalytics and shows the great potential of these methods for biomedical diagnostics.  相似文献   

18.
New biochip technology for label-free detection of pathogens and their toxins   总被引:10,自引:0,他引:10  
microSERS is a new biochip technology that uses surface-enhanced Raman scattering (SERS) microscopy for label-free transduction. The biochip itself comprises pixels of capture biomolecules immobilized on a SERS-active metal surface. Once the biochip has been exposed to the sample and the capture biomolecules have selectively bound their ligands, a Raman microscope is used to collect SERS fingerprints from the pixels on the chip. SERS, like other whole-organism fingerprinting techniques, is very specific. Our initial studies have shown that the Gram-positive Listeria and Gram-negative Legionella bacteria, Bacillus spores and Cryptosporidium oocysts can often be identified at the subspecies/strain level on the basis of SERS fingerprints collected from single organisms. Therefore, pathogens can be individually identified by microSERS, even when organisms that cross-react with the capture biomolecules are present in a sample. Moreover, the SERS fingerprint reflects the physiological state of a bacterial cell, e.g., when pathogenic Listeria and Legionella were cultured under conditions known to affect virulence, their SERS fingerprints changed significantly. Similarly, nonviable (e.g., heat- or UV-killed) microorganisms could be differentiated from their viable counterparts by SERS fingerprinting. Finally, microSERS is also capable of the sensitive and highly specific detection of toxins. Toxins that comprised as little as 0.02% by weight of the biomolecule-toxin complex produced strong, unique fingerprints when spectra collected from the complexes were subtracted from the spectra of the uncomplexed biomolecules. For example, aflatoxins B(1) and G(1) could be detected and individually identified when biochips bearing pixels of antibody or enzyme capture biomolecules were incubated in samples containing one or both aflatoxins, and the spectra were then collected for 20 s from an area of the biomolecule pixel approximately 1 microm in diameter. In the future, we plan to investigate the use of hyperspectral imaging Raman microscopy for collecting fingerprints from all the pixels on the biochip, individually yet simultaneously, to enable the rapid detection of diverse pathogens and their toxins in a sample, using a single biochip.  相似文献   

19.
20.
A unique, sensitive, highly specific, and photobleaching-resistant immunoassay system utilizing gold nanoparticles and surface-enhanced Raman scattering (SERS) is described. This new system, featuring a capability of bifunctional analysis, is manufactured by chemisorption of antibody immunoglobulin G (IgG) on gold nanoparticles (AuNP), followed by coupling the Raman-active reporter molecule, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the surface of IgG-AuNP. The adsorbed DTNB molecules exhibit strong Raman signals via both electromagnetic and chemical enhancement. The narrow spectral widths and high photostability assure the system to be an excellent detection label. This SERS-based immunoassay is applied to the detection of protein A, which is a specific surface antigen of Staphylococcus aureus. A working curve is obtained by plotting the intensity of the SERS signal of symmetric NO(2) stretching of DTNB at 1333cm(-1) versus the concentration of the analyte (antigen). A dynamic range of two to three orders of magnitude and a detection limit of 1pg/mL of protein A are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号