首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The contents of the sperm acrosome are compartmentalized at the biochemical and morphological levels. Biochemically, the acrosome can be considered to be comprised of two compartments: one consisting of readily soluble proteins and one containing a particulate acrosomal matrix. To test the hypothesis that compartmentalization affects the release of acrosomal components during the course of secretion in guinea pig sperm, we examined the relationship between the presence of specific proteins and acrosomal status and monitored the recovery of acrosomal constituents in the medium surrounding sperm induced to undergo exocytosis with the ionophore A23187. Cysteine-rich secretory protein 2 (CRISP-2), a soluble component of the acrosome, was rapidly lost from the acrosome soon after ionophore treatment. However, acrosomal matrix components remained associated with the sperm for longer periods. AM67, a matrix component and the guinea pig orthologue of the mouse sperm zona pellucida-binding protein sp56, was released at a slower rate than was CRISP-2 but at a faster rate than were two other matrix proteins, AM50 and proacrosin. Coincident with their release from the sperm, AM50 and proacrosin were posttranslationally modified, probably by proteolysis. The release of proacrosin from the matrix appears associated with the conversion of this protein to the enzymatically active acrosin protease. These results provide strong support for the hypothesis that compartmentalization plays a significant role in regulating the release of proteins during the course of acrosomal exocytosis. Acrosomal matrix proteins remain associated with the sperm for prolonged periods of time following the induction of acrosomal exocytosis, suggesting that transitional acrosomal intermediates may have significant functions in the fertilization process.  相似文献   

2.
Although its exact role in fertilization is unknown, the acrosome is a very important, exocytotic organelle overlying the anterior aspect of sperm from many species. Structurally and functionally, the acrosome can be considered to consist of soluble and particulate compartments. One component of the particulate acrosomal matrix is the zona pellucida-binding protein sp56. Our demonstration that this protein is within the acrosomal matrix and not on the sperm plasma membrane has led us to reexamine the events of acrosomal exocytosis and the role of the sperm acrosomal matrix in the fertilization process. To visualize the soluble compartment, we have utilized sperm from transgenic mice that carry soluble green fluorescent protein (GFP) in their acrosomes and, as a means to assess the exposure of acrosomal matrix components, we have tested the ability of these sperm to bind beads coated with antibodies to sp56. The loss of GFP from the acrosomes and the binding of the beads by the sperm undergoing capacitation serve as indicators of distinct stages of acrosomal exocytosis, allowing us to define intermediates of acrosomal exocytosis that occur during the course of sperm capacitation. These experiments demonstrate that the exposure and release of acrosomal proteins during spontaneous acrosomal exocytosis is not synchronous but is regulated during capacitation. Furthermore, acrosomal exocytosis under these conditions required calcium in the medium. On the basis of these findings, we propose an alternative model for acrosomal exocytosis that considers a role for these intermediates of exocytosis during capacitation and sperm-ZP interactions.  相似文献   

3.
The role of the acrosomal matrix in fertilization   总被引:1,自引:0,他引:1  
Mammalian sperm must have properly formed acrosomes to be fully functional in the process of binding and penetrating the zona pellucida (ZP), the extracellular matrix surrounding the egg. There is much evidence to raise doubts about the old "bag of enzymes" paradigm of acrosomal function, although this is the model that seems to prevail. We concur with other scientists that acrosomal exocytosis is not an all or none event where the acrosome is either "intact" or "reacted". As determined by transmission electron microscopy of human sperm undergoing acrosomal exocytosis, six stages can be identified, with the intermediate ones involving loss of acrosomal matrix material. In the mouse, there is a temporal relationship among four stages of acrosomal exocytosis. Numerous evidences suggest a more complex role for the acrosome in fertilization in which the acrosomal matrix is a scaffold for sperm-ZP interactions that self-regulates by a controlled disassembly mechanism.  相似文献   

4.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

5.
To delineate the functional aspects of zona pellucida (ZP) glycoproteins during fertilization in human, in the present study, fluorochrome-conjugated Escherichia coli (E. coli)- and baculovirus-expressed recombinant human ZP glycoprotein-2 (ZP2), -3 (ZP3), and -4 (ZP4) were employed. In an immunofluorescence assay, capacitated human sperm exhibited binding of the baculovirus-expressed recombinant ZP3 as well as ZP4 to either acrosomal cap or equatorial region whereas acrosome-reacted sperm failed to show any binding to the acrosomal cap. Using double labeling experiments, simultaneous binding of ZP3 and ZP4 to the acrosomal cap was observed suggesting the possibility of different binding sites of these proteins on the sperm surface. No binding of ZP2 was observed to the capacitated sperm. However, acrosome-reacted sperm (20.00 +/- 1.93%) showed binding of ZP2 that was restricted to only equatorial region. Interestingly, E. coli-expressed recombinant human zona proteins also showed very similar binding profiles. Competitive inhibition studies with unlabeled recombinant human zona proteins revealed the specificity of the above binding characteristics. Binding characteristics have been further validated by an indirect immunofluorescence assay using native human heat solubilized isolated zona pellucida. Employing baculovirus-expressed recombinant ZP3 and ZP4 with reduced N-linked glycosylation and respective E. coli-expressed recombinant proteins, it was observed that glycosylation is required for induction of acrosomal exocytosis but its absence may not compromise on their binding ability. These studies have revealed the binding profile of individual human zona protein to spermatozoa and further strengthened the importance of glycosylation of zona proteins for acrosomal exocytosis in spermatozoa.  相似文献   

6.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

7.
L Leyton  P Saling 《Cell》1989,57(7):1123-1130
In the mouse, the zona pellucida (ZP) glycoprotein ZP3 both binds intact sperm and induces acrosomal exocytosis. The subsequent signaling pathway(s) is still uncertain, but Gi-like proteins have been implicated. By analogy with other signal transduction mechanisms, we examined anti-phosphotyrosine antibody reactivity in mouse sperm. Antibodies reacted with three proteins of 52, 75, and 95 kd. Indirect immunofluorescence localized reactivity to the acrosomal region of the sperm head. The 52 kd and 75 kd phosphoproteins are detected only in capacitated sperm, whereas the 95 kd protein is detected in both fresh and capacitated sperm. For the 95 kd protein, the level of immunoreactivity is not related to sperm motility but is enhanced by both capacitation and sperm interaction with solubilized ZP proteins. In addition, binding of radiolabeled whole ZP or purified ZP3 to blots of separated sperm proteins identified two ZP binding proteins of 95 kd and 42 kd. 95 kd sperm proteins that bind to ZP3 also react with anti-phosphotyrosine antibodies (in a ZP concentration-dependent manner), supporting the idea that the same 95 kd sperm protein serves as a ZP3 receptor and as a tyrosine kinase substrate. These findings and our evidence on acrosome reaction triggering via sperm receptor aggregation suggest that a 95 kd protein in the sperm plasma membrane is aggregated by ZP3, which stimulates tyrosine kinase activity leading to acrosomal exocytosis.  相似文献   

8.
The acrosomal reaction (AR) is a regulated sperm exocytotic process that involves fusion of the plasma membrane (PM) with the outer acrosomal membrane (OAM). Our group has described F-actin cytoskeletons associated to these membranes. It has been proposed that in regulated exocytosis, a cortical cytoskeleton acts as a barrier that obstructs membrane fusion, and must be disassembled for exocytosis to occur. Actin-severing proteins from the gelsolin family have been considered to break this barrier. The present study attempted to determine if gelsolin has a function in guinea pig sperm capacitation and AR. By indirect immunofluorescence (IIF), gelsolin was detected in the apical and postacrosomal regions of the head and in the flagellum in both capacitated and non-capacitated guinea pig spermatozoa. By Western blotting, gelsolin was detected in isolated PM and OAM of non-capacitated spermatozoa. Gelsolin and actin were detected in a mixture of PM-OAM obtained by sonication, and both proteins were absent in membranes of capacitated spermatozoa. Inhibition of three different pathways of PIP2 hydrolysis during capacitation did not cancel gelsolin loss from membranes. Gelsolin was detected by Western blotting associated to membrane cytoskeletons obtained after phalloidin F-actin stabilization and Triton-X treatment; additionally, by immunoprecipitation, it was shown that gelsolin is associated with actin. By electron microscopy we observed that skeletons disassemble during capacitation, but phalloidin prevents disassembly. A three-dimensional skeleton was observed that apparently joins PM with OAM. Exogenous gelsolin stimulates AR assayed in a permeabilized spermatozoa model. Results suggest that gelsolin disassembles F-actin cytoskeletons during capacitation, promoting AR.  相似文献   

9.
Polyclonal antisera directed against conserved and subtype-specific peptide sequences of the alpha-subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to characterize the nature of mammalian sperm G proteins and to determine whether their localization was consistent with their proposed roles in mediating ZP3-induced acrosomal exocytosis. Mouse and guinea pig sperm exhibit positive immunofluorescence in the acrosomal region using an antiserum directed against a peptide region common to all alpha-subunits of G proteins (G alpha). The immunofluorescence disappears after sperm have undergone the acrosome reaction, suggesting that the immunoreactive material is associated with the plasma membrane/outer acrosomal membrane region overlying the acrosome. The presence of G proteins in this region is confirmed by the presence of a Mr 41,000 substrate for pertussis toxin (PT)-catalyzed [32P]ADP-ribosylation in purified plasma membrane/outer acrosomal membrane hybrid vesicles obtained from acrosome-reacted guinea pig sperm. Immunoprecipitation and polyacrylamide gel electrophoresis of PT-catalyzed [32P]ADP-ribosylated protein(s) using anti-peptide antisera generated against sequences unique to Gi alpha 1, Gi alpha 2, and Gi alpha 3 confirm the existence of all three Gi subtypes in mouse sperm extracts. Indirect immunofluorescence using an antiserum directed against a peptide region present in Gz alpha, a PT-insensitive G protein, demonstrates positive immunoreactivity in the postacrosomal/lateral face region of the mouse sperm head. This immunoreactivity is retained during acrosomal exocytosis in response to solubilized ZP and then disappears subsequent to this exocytotic event. These data demonstrate that Gi protein alpha-subunits are present in the acrosomal region of mammalian sperm, consistent with their postulated role in regulating ZP3-mediated acrosomal exocytosis, and that PT-insensitive Gz alpha is found in a region of the sperm head distinct from that of the Gi alpha subunits.  相似文献   

10.
In order to determine whether metabolizable sugars delayed capacitation of guinea pig spermatozoa, these cells were pre-incubated in Tyrode's pyruvate lactate glucose medium (T-PLG) or Tyrode's glucose solution (T-G). They were then transferred to minimal culture medium containing pyruvate and lactate (MCM-PL) and the occurrence of acrosomal reactions (AR) was determined by light microscopic observations of wet mount aliquots. The percentage of acrosomal reactions was quantitated in fixed samples and occurrence of a true AR was confirmed by electron microscopy. Activated acrosome-reacted spermatozoa were observed within 5 min when cells were transferred to MCM-PL solution, after preincubating them for 60–120 min either in T-PLG or T-G media. By 15 min in MCM-PL the percentage of acrosome-reacted spermatozoa reached values similar to those obtained in cells pre-incubated from the beginning in MCM-PL medium (P > 0.05 in both) but significantly different from T-PLG and T-G controls (P < 0.0005 in both). The acrosomal reaction was external calcium dependent and independent of the Tyrode's media pH ranging from 7.2 to 8.0. The results obtained suggested that capacitation occurred in T-PLG and that it was not delayed by glucose; the results also suggested that capacitation could occur within a short time with glucose as the only exogenous substrate, but that the acrosome reaction could have been arrested by a glucose metabolite. Data are presented which suggest that intracellular levels of glucose-6-phosphate (as 2-deoxyglucose-6-phosphate)could play a key role in the expression of the acrosome reaction in sperm already able to perform it. A new hypothesis is suggested for the development of the fertilizing potential of guinea pig sperm when in the female genital tract.  相似文献   

11.
Mouse sperm protein sp56 is a component of the acrosomal matrix   总被引:5,自引:0,他引:5  
Previously, we identified the guinea pig sperm acrosomal matrix glycoprotein AM67 and demonstrated that it is most closely related to mouse sperm sp56, initially reported to be a cell-surface protein. On the contrary, our studies demonstrated that sp56 is an intra-acrosomal component. Based upon the homology between guinea pig AM67 and mouse sp56, we hypothesized that sp56 was part of the acrosomal matrix, a structure that had yet to be demonstrated to exist in mouse sperm. In this paper, we show that sp56 first appeared in late meiotic cells and accumulated during spermiogenesis, the haploid stage of spermatogenic cell development. Using affinity-purified anti-peptide antisera, we determined that the molecular weight of sp56 in cauda epididymal sperm approximated that of guinea pig AM67 ( approximately 67 000 M:(r)) and that sp56 was present in a high molecular weight, disulfide-linked complex. The forms of sp56 in pachytene spermatocytes and spermatids had higher molecular weights than was found for the sperm form; the size differences were apparently due to alterations in carbohydrate side chains. The sp56 complex could not be solubilized by the nonionic detergent Triton X-100 but remained associated with the dorsal surface of the mouse sperm head, demonstrating that sp56 is a component of the mouse sperm acrosomal matrix.  相似文献   

12.
Phospholipase A(2) (PLA(2)) is activated in spermatozoa in response to progesterone and Ca(2+) ionophores, but to our knowledge, no study has yet reported zona pellucida (ZP)-induced activation of PLA(2). We investigated whether PLA(2) is involved in ZP-stimulated acrosomal exocytosis, if Ca(2+) is required for activation of PLA(2), and signal transduction pathways modulating PLA(2) using guinea pig sperm as a model. Spermatozoa were capacitated and labeled in low-Ca(2+) medium with [(14)C]choline chloride or [(14)C]arachidonic acid and were then exposed to millimolar Ca(2+) and various reagents and stimulated with ZP. Precapacitated spermatozoa exposed to millimolar Ca(2+) and stimulated with ZP experienced increases in arachidonic acid (AA) and lysophosphatidylcholine (lysoPC) levels and a parallel decrease in phosphatidylcholine level; these changes are indicative of PLA(2) activation. Simulation with ZP also led to acrosomal exocytosis in a high proportion of spermatozoa. Lipid changes and exocytosis were prevented if spermatozoa were exposed to aristolochic acid, a PLA(2) inhibitor, before treatment with ZP. Stimulation with ZP in medium without added Ca(2+) or in medium with millimolar Ca(2+) and EGTA or La(3+) resulted in no lipid changes or exocytosis. Pretreatment with pertussis toxin, a G(i) protein inhibitor, before stimulation with ZP blocked the release of AA and lysoPC as well as acrosomal exocytosis. Exposure of spermatozoa to the diacylglycerol (DAG) kinase inhibitor R59022 before ZP stimulation led to a significant increase in generation of lysoPC and exocytosis. Taken together, these results indicate very strongly that PLA(2) plays an essential role in ZP-induced exocytosis in spermatozoa, that PLA(2) activation requires Ca(2+) internalization, and that PLA(2) activation is regulated by signal transduction pathways involving G proteins and DAG.  相似文献   

13.
Capacitated acrosome-intact spermatozoa interact with specific sugar residues on neoglycoproteins (ngps) or solubilized zona pellucida (ZP), the egg's extracellular glycocalyx, prior to the initiation of a signal transduction cascade that results in the fenestration and fusion of the sperm plasma membrane and the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents (i.e., induction of the acrosome reaction (AR)). The AR releases acrosomal contents at the site of sperm-zona binding and is thought to be a prerequisite event that allows spermatozoa to penetrate the ZP and fertilize the egg. Since Ca(2+)/calmodulin (CaM) plays a significant role in several cell signaling pathways and membrane fusion events, we have used a pharmacological approach to examine the role of CaM, a calcium-binding protein, in sperm capacitation and agonist-induced AR. Inclusion of CaM antagonists (calmodulin binding domain, calmidazolium, compound 48/80, ophiobolin A, W5, W7, and W13), either in in vitro capacitation medium or after sperm capacitation blocked the npg-/ZP-induced AR. Purified CaM largely reversed the AR blocking effects of antagonists during capacitation. Our results demonstrate that CaM plays an important role in priming (i.e., capacitation) of mouse spermatozoa as well as in the agonist-induced AR. These data allow us to propose that CaM regulates these events by modulating sperm membrane component(s).  相似文献   

14.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

15.
A critical step during fertilization is the sperm acrosome reaction in which the acrosome releases its contents allowing the spermatozoa to penetrate the egg investments. The sperm acrosomal contents are composed of both soluble material and an insoluble material called the acrosomal matrix (AM). The AM is thought to provide a stable structure from which associated proteins are differentially released during fertilization. Because of its important role during fertilization, efforts have been put toward isolating the AM for biochemical study and to date AM have been isolated from hamster, guinea pig, and bull spermatozoa. However, attempts to isolate AM from mouse spermatozoa, the species in which fertilization is well-studied, have been unsuccessful possibly because of the small size of the mouse sperm acrosome and/or its fusiform shape. Herein we describe a procedure for the isolation of the AM from caput and cauda mouse epididymal spermatozoa. We further carried out a proteomic analysis of the isolated AM from both sperm populations and identified 501 new proteins previously not detected by proteomics in mouse spermatozoa. A comparison of the AM proteome from caput and cauda spermatozoa showed that the AM undergoes maturational changes during epididymal transit similar to other sperm domains. Together, our studies suggest the AM to be a dynamic and functional structure carrying out a variety of biological processes as implied by the presence of a diverse group of proteins including proteases, chaperones, hydrolases, transporters, enzyme modulators, transferases, cytoskeletal proteins, and others.  相似文献   

16.
Guanine nucleotide-binding regulatory proteins play key intermediary roles in regulating zona pellucida-mediated acrosomal exocytosis in mouse and bull sperm. Since human sperm possess a Gi-like protein and undergo the acrosome reaction in response to the human zona pellucida, we investigated whether this G protein plays a regulatory role in this exocytotic process. Zonae pellucidae isolated from eggs that had been inseminated but had shown no signs of fertilization after retrieval for in vitro fertilization and embryo transfer were pooled into groups of greater than or equal to 50 in order to reduce variability in biological responses due to the possible presence of ZP that had undergone modifications associated with the polyspermy block. Acid-solubilized zonae pellucidae were incubated with capacitated sperm, and the sperm then assessed for the acrosome reaction using both the P. sativum agglutinin and chlortetracycline fluorescence assays; both assays gave similar results. Sperm incubated with solubilized zonae pellucidae at a final concentration of 2, 4, or 6 ZP/microliter underwent acrosomal exocytosis to a similar extent as compared with A-23187. Sperm were incubated with 1 microgram/ml pertussis toxin during capacitation to functionally inactivate the Gi-like protein. Pertussis toxin treatment of sperm did not affect sperm motility and the ability of the cells to bind to structurally intact zonae pellucidae. Pertussis toxin, however, completely inhibited the percentage acrosome reactions induced by solubilized zonae pellucidae. By contrast, the A-23187-induced acrosome reaction was insensitive to PT treatment. Pertussis toxin inhibition of the zona pellucida-induced acrosome reaction occurred in a concentration-dependent manner with maximal effects observed at 100 ng/ml PT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Significant release of the acrosomal enzymes arylsulfatase, β-N-acetylhexosaminidase and hyaluronidase was observed following the treatment of ejaculated rabbit spermatozoa for 12 hours in 20% rabbit serum for inducing in vitro capacitation, and these sperm were capable of in vivo fertilization; however, the treatment of sperm for 15 minutes in high ionic strength (380 mOsm/kg) or low ionic strength medium (305 mOsm/kg) for in vitro capacitation did not result in any significant release of the above enzymes nor were the sperm capable of in vivo fertilization. Serum-treated spermatozoa remained significantly motile following the 12 hour treatment, 51% underwent the acrosome reaction and were capable of fertilizing 66% of the ova in vivo. Identical serum treatment of lysosomes from rabbit liver resulted in a comparable release of the lysosomal enzymes. Serum treatment for in vitro capacitation resulted in vesiculation of the anterior margin of half the spermatozoa, but left their inner acrosomal membranes and equatorial segments intact. A biochemical relationship between the release of acrosomal enzymes and capacitation is suggested.  相似文献   

18.
As a consequence of the acrosomal reaction during fertilization, the inner acrosomal membrane (IAM) becomes exposed and forms the leading edge of the sperm for adhesive binding to and subsequent penetration of the zona-pellucida (ZP) of the metaphase-II-arrested oocyte. A premise of this review is that the IAM of spermatozoa anchors receptors and enzymes (on its extracellular side) that are required for sperm attachment to and penetration of the ZP. We propose a sperm cell fractionation strategy that allows for direct access to proteins bound to the extracellular side of the IAM. We review the types of integral and peripheral IAM proteins that have been found by this approach and that have been implicated in ZP recognition and lysis. We also propose a scheme for the origin and assembly of these proteins within the developing acrosome during spermiogenesis. During development, the extravesicular side of the membrane of the acrosomic vesicle is coated by peripheral proteins that transport and bind this secretory vesicle to the spermatid nucleus. The part of the membrane that binds to the nucleus becomes the IAM, while its extravesicular protein coat, which is retained between the IAM and the nuclear envelope of spermatozoa becomes the subacrosomal layer of the perinuclear theca (SAL-PT). Another premise of this review is that the IAM of spermatozoa is bound with proteins (on its intracellular side), namely the SAL-PT proteins, which hold the clue to the mechanism of acrosomal-nuclear docking. We propose a sperm cell fractionation strategy that allows for direct access to SAL-PT proteins. We then review the types of SAL-PT proteins that have been found by this approach and that have been implicated in transporting and binding the acrosome to the sperm nucleus.  相似文献   

19.
An important feature of male fertility is the physiological priming of spermatozoa by a multifaceted process collectively referred to as capacitation. The end point of this evasive process is the hyperactivated spermatozoa capable of binding to terminal sugar residues on the egg's extracellular coat, the zona pellucida (ZP), and undergoing acrosomal exocytosis (i.e., induction of the acrosome reaction). The hydrolytic action of acrosomal enzymes released at the site of zona binding, along with the enhanced thrust generated by the hyperactivated beat pattern of the bound spermatozoa, are important factors that regulate the penetration of ZP and fertilization of the egg. Despite many advances in identifying sperm components that promote capacitation, the mechanism underlying the calcium-triggered process remains elusive. The purpose of this review article is to focus on new advances that have enhanced our understanding of in vivo/in vitro capacitation, a prerequisite event resulting from a dramatic modification and reorganization of the sperm membrane molecules. Special emphasis has been laid on accumulating evidence suggesting potential similarities between the sperm capacitation and early phases of calcium-triggered membrane fusion (i.e., tethering and docking) during secretory and endocytotic pathways among eukaryotes.  相似文献   

20.
Interactions between sperm and zona pellucida (ZP) during mammalian fertilization are not well characterized at the molecular level. To identify sperm proteins that recognize ligand ZP3, we used sonicated sperm membrane fractions as competitors in a quantitative binding assay. Sonicated membranes were density fractionated into 4 fractions. Bands 1-3 contained membrane vesicles, and band 4 contained axonemal and midpiece fragments. In competitive binding assays, bands 1, 2, and 3 but not band 4 were able to compete with live, capacitated, intact sperm for soluble 125I-ZP binding. Affinity-purified ZP fractions consisting of a ZP3-enriched fraction (125I-ZP3) and a fraction enriched for ligands ZP1 and ZP2 and depleted of ZP3 (125I-ZP1/2) were obtained by antibody affinity purification of ZP3. In competitive binding assays, bands 2 and 3 competed for 125I-ZP3 binding, but band 1 did not interact with enriched 125I-ZP3. None of the membrane fractions competed for 125I-ZP1/2 binding. These results demonstrate that band 2 and band 3 contain sperm components that interact with ZP3 alone and that components in band 1 interact with ZP3 in conjunction with either ZP1 or ZP2. These data indicate that there must be at least 2 unique sperm plasma membrane components that mediate intact sperm interactions with ZP glycoproteins in mouse. Bands 2 and 3 are likely to contain a primary ZP-binding protein because they interacted directly with ZP3, whereas band 1 may contain sperm proteins involved in later interactions with the ZP, perhaps transitional interactions to maintain sperm contact with the ZP during acrosomal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号