首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To study the microbial community responsible for the reduction of the polluting load during aerobic digestion of pig slurry.
Methods and Results:  We analysed bacterial succession by nonculture-based methods and determined the physicochemical parameters and polluting substances during 6 days of aerobic digestion. The bacterial subpopulations evolved by aeration, predominantly Bacillus spp., degraded organic matter and vigorously consumed oxygen, as indicated by low oxidation–reduction potential (ORP). In this phase, the volatile fatty acid (VFA) levels drastically decreased, and VFAs were almost depleted on day 4. Simultaneously, the ammonia concentration decreased to its lowest level on day 4; thereafter, it increased until the end of the process. After the decrease in the total organic carbon content in the supernatant of the decomposed slurry, the ORP increased (∼0 mV), and the microbial community showed an abundance of lineages belonging to the phylum Proteobacteria.
Conclusions:  Bacillus was the predominant member of the bacterial community driving the VFA-removal process. Their predominance was related to the presence of available carbon, including VFAs and changes in ORP.
Significance and Impact of the Study:  Information on the relationships among the involved microbes, polluting materials and physicochemical parameters will aid process design and retrofitting of the process.  相似文献   

2.
Previous studies have shown that the soil enzyme activity and microbial respiration intensities varied in two different types of tidal wetland in Chongming Dongtan, the first a sandy soil in a scouring bank with Phragmites australis and the second a saline-alkali clay soil in silting bank with P. australis/Spartina alterniflora/Scirpus mariqueter, resulting in different organic carbon reservation capabilities; however, their microbial biomass did not differ significantly. To clarify the microbial mechanism that explains the variability of soil respiration among different wetland areas, the community structure and abundance of soil microorganisms in different types of wetland were investigated using denaturing gradient gel electrophoresis (DGGE) plus real-time quantitative polymerase chain reaction (PCR) technologies, and the relationship between soil environmental factors and the microbial community structure and the soil respiration intensity was elucidated. The results revealed that the soil microbial diversity and community structure differed between the two typical wetland areas. The common population was uncultured bacterium in both areas, and the most abundant community was α-, β-, γ-Proteobacteria, which play an important role in the cycling of carbon in soil. However, the abundance of α-Proteobacteria in Area A was 18.2% of that in Area B (P <0.05), while the β-Proteobacteria in Area A was 3.23 times higher than that in Area B (P <0.05). In addition, one cellulose-degrading bacteria, uncultured Bacilli, was detected in Area A. PCA (Principal component analysis) revealed that γ-Proteobacteria and β-Proteobacteria had the greatest impact on soil respiration intensity. Both soil water content and salinity depressed the propagation of β-Proteobacteria. Considering the similar microbial biomass and abundance of γ-Proteobacteria between the two areas, the lower level of β-Proteobacteria, uncultured Bacilli bacterium in Area B might be important factors involved in the lower soil respiration, and hence the higher soil organic carbon reservation capability in Area B.  相似文献   

3.
A previous bioremediation survey on a creosote-contaminated soil showed that aeration and optimal humidity promoted depletion of three-ringed polycyclic aromatic hydrocarbons (PAHs), but residual concentrations of four-ringed benzo(a)anthracene (B(a)A) and chrysene (Chry) remained. In order to explain the lack of further degradation of heavier PAHs such as four-ringed PAHs and to analyze the microbial population responsible for PAH biodegradation, a chemical and microbial molecular approach was used. Using a slurry incubation strategy, soil in liquid mineral medium with and without additional B(a)A and Chry was found to contain a powerful PAH-degrading microbial community that eliminated 89% and 53% of the added B(a)A and Chry, respectively. It is hypothesized that the lack of PAH bioavailability hampered their further biodegradation in the unspiked soil. According to the results of the culture-dependent and independent techniques Mycobacterium parmense, Pseudomonas mexicana, and Sphingobacterials group could control B(a)A and Chry degradation in combination with several microorganisms with secondary metabolic activity.  相似文献   

4.
Aims: To investigate the effect of the forage source and feed particle size (FPS) in ruminant rations on the composition of the ruminal Firmicutes community in vitro. Methods and Results: Three diets, varying in maize silage to grass silage ratio and FPS, were incubated in a rumen simulation system. Microbial samples were taken from the liquid fermenter effluents. Microbial community analysis was performed by 16S rRNA‐based techniques. Clostridia‐specific single‐strand conformation polymorphism profiles revealed changes of the community structure in dependence on both factors tested. The coarse grass silage–containing diets seemed to enhance the occurrence of different Roseburia species. As detected by real‐time quantitative PCR, Ruminococcus albus showed a higher abundance with decreasing FPS. A slightly lower proportion of Bacilli was found with increasing grass silage to maize silage ratio by fluorescence in situ hybridization (FISH). In contrast, a slightly higher proportion of bacterial species belonging to the Clostridium‐clusters XIV a and b was detected by FISH with increasing grass silage contents in the diet. Conclusions: The ruminal Firmicutes community is affected by the choice of the forage source and FPS. Significance and Impact of the Study: This study supplies fundamental knowledge about the response of ruminal microbial communities to changing diets. Moreover, the data suggest a standardization of grinding of feeds for in vitro studies to facilitate the comparison of results of different laboratories.  相似文献   

5.
Aquatic sediments harbour diverse microbial communities that mediate organic matter degradation and influence biogeochemical cycles. The pool of bioavailable carbon continuously changes as a result of abiotic processes and microbial activity. It remains unclear how microbial communities respond to heterogeneous organic matrices and how this ultimately affects heterotrophic respiration. To explore the relationships between the degradation of mixed carbon substrates and microbial activity, we incubated batches of organic‐rich sediments in a novel bioreactor (IsoCaRB) that permitted continuous observations of CO2 production rates, as well as sequential sampling of isotopic signatures (δ13C, Δ14C), microbial community structure and diversity, and extracellular enzyme activity. Our results indicated that lower molecular weight (MW), labile, phytoplankton‐derived compounds were degraded first, followed by petroleum‐derived exogenous pollutants, and finally by higher MW polymeric plant material. This shift in utilization coincided with a community succession and increased extracellular enzyme activities. Thus, sequential utilization of different carbon pools induced changes at both the community and cellular level, shifting community composition, enzyme activity, respiration rates, and residual organic matter reactivity. Our results provide novel insight into the accessibility of sedimentary organic matter and demonstrate how bioavailability of natural organic substrates may affect the function and composition of heterotrophic bacterial populations.  相似文献   

6.
苏丹  张凯  陈法霖  李睿达  郑华 《生态学报》2015,35(18):5940-5947
土壤微生物群落碳代谢功能既受土壤氮素水平的影响,也与土壤有机碳水平密切相关,但二者如何共同影响土壤微生物群落碳代谢功能的研究尚不多见。以我国南方广泛种植的桉树林为对象,采用野外控制实验比较研究了4种施氮处理(对照:0kg/hm2,低氮:84.2 kg/hm2,中氮:166.8 kg/hm2,高氮:333.7 kg/hm2)对有机碳水平差异显著的两桉树林样地土壤微生物群落碳代谢功能的影响,结果表明:(1)两种有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度显著不同,高有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度显著高于低有机碳水平桉树林(P0.01);(2)施氮显著改变了桉树林土壤微生物群落的碳代谢强度和代谢碳源丰富度(P0.05),随着施氮水平的升高,土壤微生物群落碳代谢强度和代谢碳源丰富度均呈现先增加后降低的变化规律,但是高、低有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度对施氮梯度的响应各不相同,高、低有机碳水平桉树林的土壤微生物群落碳代谢指标分别在中氮、低氮处理中达到最高值;(3)施氮影响土壤微生物群落代谢的碳源类型主要是碳水化合物类、氨基酸类和羧酸类,土壤微生物生物量是影响土壤微生物碳代谢强度和代谢碳源丰富度的重要因素。由此可知,施氮对土壤微生物碳代谢功能影响,也与土壤本底中有机碳水平的调节有关,所以在研究土壤微生物群落对施氮等条件的响应时,不能忽略土壤中有机碳水平。  相似文献   

7.
Chinese hickory (Carya cathayensis Sarg.) is an important economic forest in Southeastern China. A large amount of hickory husk waste is generated every year but with a low proportion of returning. Meanwhile, intensive management has resulted in soil degradation of Chinese hickory plantations. This study aims to investigate the effects of three Chinese hickory husk returning modes on soil amendment, including soil acidity, soil nutrition, and microbial community. The field experiment carried out four treatments: control (CK), hickory husk mulching (HM), hickory husk biochar (BC), and hickory husk organic fertilizer (OF). The phospholipid fatty acid (PLFA) biomarker method was employed to determine the soil microbial community. After one year of treatment, the results showed that: (i) HM and BC significantly increased soil pH by 0.33 and 1.71 units, respectively; (ii) HM, BC and OF treatments significantly increased the soil organic carbon, alkaline nitrogen, available phosphorous, and available potassium. The OF treatment demonstrated the most significant improvement in the soil nutrient; (iii) The soil microbial biomass significantly increased in the HM, BC and OF treatments, and all microbial groups showed an increasing trend. HM treatment increased the fungal/bacterial ratio (F/B). The OF treatment significantly decreased the Shannon-Wiener diversity (H’) and evenness index (J) of the microbial community (P < 0.05). Considering the treatments effects, costs, and ease of operation, our recommended returning modes of Chinese hickory husk are mulching and organic fertilizer produced by composting with manure.  相似文献   

8.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

9.
Organic substances viz., sewage and slurry, compost, farmyard manure (FYM) and green manure used in the study under different moisture regimes had a varied effect on cyanobacterial nitrogenase activity and its distributional pattern. Green manure source was the most effective in enhancing cyanobacterial nitrogenase activity, followed by FYM, compost and sewage and slurry. A better response was observed in soils under waterlogged than under moist conditions. A gradual increase in nitrogenase activity was recorded up to one per cent organic carbon both in vitro and in vivo. The cyanobacterial diversity was maximum in sewage and slurry sites.  相似文献   

10.
This study focused on the microbial ecology of tetrachloroethene (PCE) degradation to trichloroethene, cis‐1,2‐dichloroethene and vinyl chloride to evaluate the relationship between the microbial community and the potential accumulation or degradation of these toxic metabolites. Multiple soil microcosms supplied with different organic substrates were artificially contaminated with PCE. A thymidine analogue, bromodeoxyuridine (BrdU), was added to the microcosms and incorporated into the DNA of actively replicating cells. We compared the total and active bacterial communities during the 50‐day incubations by using phylogenic microarrays and 454 pyrosequencing to identify microorganisms and functional genes associated with PCE degradation to ethene. By use of this integrative approach, both the key community members and the ecological functions concomitant with complete PCE degradation could be determined, including the presence and activity of microbial community members responsible for producing hydrogen and acetate, which are critical for Dehalococcoides‐mediated PCE degradation. In addition, by correlation of chemical data and phylogenic microarray data, we identified several bacteria that could potentially oxidize hydrogen. These results demonstrate that PCE degradation is dependent on some microbial community members for production of appropriate metabolites, while other members of the community compete for hydrogen in soil at low redox potentials.  相似文献   

11.
王笑  王帅  滕明姣  林小芬  吴迪  孙静  焦加国  刘满强  胡锋 《生态学报》2017,37(15):5146-5156
不同生态型蚯蚓的取食偏好和生境有所差异,因此蚯蚓的生态型差异可能关乎其对土壤性质的不同影响;有关不同生态型蚯蚓对土壤性质尤其是微生物学性质影响的研究有助于了解蚯蚓生态功能的作用机制。在野外调控试验的第4年采集土壤,研究了牛粪混施和表施处理下内层种威廉腔环蚓(Metaphire guillelmi)和表层种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤微生物群落结构和主要理化性质的影响。结果表明,土壤微生物群落结构同时受到蚯蚓种类和牛粪施用方式的影响。牛粪表施时,两种蚯蚓均显著降低了菌根真菌、真菌生物量和原生动物生物量(P0.05);牛粪混施时,不同蚯蚓的影响有所差异,威廉腔环蚓明显增加了菌根真菌、真菌生物量和放线菌生物量,而赤子爱胜蚓的作用不明显。此外,两种蚯蚓均提高了土壤孔隙度、团聚体稳定性和土壤p H、矿质氮以及微生物生物量碳氮水平,但提高幅度取决于蚯蚓种类和牛粪施用方式。冗余分析表明蚯蚓影响下土壤微生物群落结构的变化与团聚体稳定性、p H、速效磷、矿质氮呈正相关,而与土壤容重呈负相关。  相似文献   

12.
The results of studying nitrogen fixation in organic substrates processed by different ecological groups of earthworms suggest that the earthworms Aporrectodea caliginosa actively stimulate nonsymbiotic nitrogen fixation. In this respect, they exceed the manure worms Eizenia foetida tens of times due to the formation in the organic substrate of conditions favorable for the nitrogen fixing bacteria, and namely: low content of nitrogen easily accessible for microorganisms, changes in the structure of the microbial community of the substrate in favor of non-spore forms of bacteria, and suppression of the growth of saprophyte bacilli, the main competitors of nitrogen fixing bacteria for carbon nourishment sources.  相似文献   

13.
The microbial degradation of aromatic hydrocarbons from effluents of a petroleum refinery was investigated, with emphasis on the breakdown of naphthalene to salicylic acid. The microorganisms were grown in a synthetic medium with naphthalene as the sole carbon source. The effects of pH, temperature, aeration and naphthalene concentration were studied. The optimum conditions for degradation were found to be: pH 6.0, 28°C, 25 ml medium with 1% naphthalene in 500 ml flasks. Salicylic acid was estimated by colorimetric and chromatographic methods. Maximum of growth was found on the 5th day of cultivation.Pseudomonas denitrificans produced 9.0 μg salicylic acid per ml medium,Achromobacter sp. produced 7.1 μg/ml.  相似文献   

14.
黄土高原半干旱区轮作休耕模式对土壤真菌的影响   总被引:5,自引:0,他引:5  
南丽丽  谭杰辉  郭全恩 《生态学报》2020,40(23):8582-8592
通过田间试验,研究休耕(CK)、残膜覆盖、伏天深耕、施有机肥、秸秆还田和绿肥还田对土壤微生物量碳氮、酶活性及真菌群落的影响。结果表明,除过氧化氢酶外,不同处理对土壤微生物量碳氮、脲酶、碱性磷酸酶、脱氢酶、pH及有机质均有显著影响。从门水平上看,土壤真菌群落主要由子囊菌门、担子菌门和被孢霉门构成。其中伏天深耕、玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理的子囊菌相对丰度分别为43.23%和69.38%,显著高于CK (33.71%);从纲水平上看,座囊菌纲、粪壳菌纲、伞菌纲和被孢霉纲为优势菌纲,其中玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理以座囊菌纲为主(60.69%),其余处理以粪壳菌纲为主(4.11%-24.79%);真菌多样性指数施牛羊粪+深翻耕+连续3年种植豌豆(拌根瘤菌粉8.5 g/kg种子)并在盛花期翻压还田、玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年、玉米秸秆粉碎还田+施牛羊粪+深翻耕+连续3年种植箭筈豌豆并在盛花期翻压还田处理显著低于CK和其他处理,丰富度指数玉米秸秆粉碎还田+施牛羊粪+深翻耕+连续3年种植毛苕子并在盛花期翻压还田处理显著高于CK和其他处理;真菌营养类型玉米秸秆粉碎还田+施牛羊粪+深翻耕后连续休耕3年处理以腐生营养型为主(62.9%),其他处理以病理营养型和腐生营养型为主。冗余分析和Monte Carlo置换检验结果显示,土壤微生物量碳、微生物量氮、pH和有机质含量对土壤真菌群落结构影响显著(P<0.05)。与休耕(CK)、残膜覆盖、伏天深耕相比,施有机肥、秸秆还田、绿肥还田结合深耕均降低了土壤中病理营养型真菌的相对丰度,利于保持农田土壤生态系统健康。  相似文献   

15.
Land‐cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai–Tibetan Plateau were analysed using high‐throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p < .05) different between alpine meadow and alpine steppe meadow; the microbial ɑ‐diversity in alpine steppe meadow was significantly (p < .01) higher than in alpine meadow. Molecular ecological network analysis indicated that the microbial community structure in alpine steppe meadow was more complex and tighter than in the alpine meadow. The relative abundance of soil microbial labile carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition.  相似文献   

16.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

17.
The main objectives of this work were to investigate the evolution of some principal physico-chemical properties (temperature, carbon dioxide, oxygen, ammonia, pH, electrical conductivity, organic matter) and microbial population (mesophilic and thermophilic bacteria and fungi) during composting poultry manure with wheat straw in a reactor system, and to evaluate the optimum mixture ratio for organic substrate production. The experiments were carried out in four small laboratory reactors (1 l) and one large reactor (32 l) under adiabatic conditions over 14 days. During the process the highest temperature was 64.6°C, pH varied between 7.40 and 8.85, electrical conductivity varied between 3.50 and 4.31 dS m−1 and the highest value of organic matter (dry weight) degradation was 47.6%. Mesophilic bacteria and fungi predominated in the beginning, and started the degradation with generation of metabolic heat. By increasing the temperature in reactors, the number of thermophilic microorganisms also increased, which resulted in faster degradation of substrate. The application of a closed reactor showed a rapid degradation of manure/straw mixture as well as a good control of the emissions of air polluting gases into atmosphere. The results showed that the ratio of manure to straw 5.25:1 (dry weight) was better for composting process than the other mixture ratios.  相似文献   

18.
Vegetables and fruits are an important part of a healthy food diet, however, the eco‐sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated €15.5 billion per year on inorganic fertilizers and the production of N‐fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture.  相似文献   

19.
Macrophyte combined with artificial aeration is a promising in situ remediation approach for urban rivers polluted with nutrients and organic matter. However, seasonal variations and aeration effects on phytoremediation performance and root-adhered microbial communities are still unclear. In this study, Pontederia cordata was used to treat polluted urban river water under various aeration intensities. Results showed that the highest removal efficiencies of chemical oxygen demand (CODCr) and total nitrogen (TN) were attained under aeration of 30 L min?1 in spring and summer and 15 L min?1 in autumn, while total phosphorus (TP) removal reached maximum with aeration of 15 L min?1 in all seasons. Moderate aeration was beneficial for increasing the diversity of root-adhered bacteria communities, and the shift of bacterial community structure was more pronounced in spring and autumn with varying aeration intensity. The dual effect, i.e. turbulence and dissolved oxygen (DO), of aeration on the removal of CODCr and TN prevailed over the individual effect of DO, while DO was the most influential factor for TP removal and the root-adhered bacterial community diversity. P. cordata combined with 15 L min?1 aeration was deemed to be the best condition tested in this study.  相似文献   

20.
A primary tropical peat swamp forest is a unique ecosystem characterized by long-term accumulation of plant biomass under high humidity and acidic water-logged conditions, and is regarded as an important terrestrial carbon sink in the biosphere. In this study, the microbial community in the surface peat layer in Pru Toh Daeng, a primary tropical peat swamp forest, was studied for its phylogenetic diversity and metabolic potential using direct shotgun pyrosequencing of environmental DNA, together with analysis of 16S rRNA gene library and key metabolic genes. The community was dominated by aerobic microbes together with a significant number of facultative and anaerobic microbial taxa. Acidobacteria and diverse Proteobacteria (mainly Alphaproteobacteria) constituted the major phylogenetic groups, with minor representation of archaea and eukaryotic microbes. Based on comparative pyrosequencing dataset analysis, the microbial community showed high metabolic versatility of plant polysaccharide decomposition. A variety of glycosyl hydrolases targeting lignocellulosic and starch-based polysaccharides from diverse bacterial phyla were annotated, originating mostly from Proteobacteria, and Acidobacteria together with Firmicutes, Bacteroidetes, Chlamydiae/Verrucomicrobia, and Actinobacteria, suggesting the key role of these microbes in plant biomass degradation. Pyrosequencing dataset annotation and direct mcrA gene analysis indicated the presence of methanogenic archaea clustering in the order Methanomicrobiales, suggesting the potential on partial carbon flux from biomass degradation through methanogenesis. The insights on the peat swamp microbial assemblage thus provide a valuable approach for further study on biogeochemical processes in this unique ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号