首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of murine skin to tumor-promoting agents such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) causes up-regulation of cyclooxygenase-2 (COX-2) and increased prostaglandin (PG) synthesis. Pharmacological inhibition of COX-2 significantly reduces skin tumor development. However, we previously demonstrated that K14.COX-2 transgenic (TG) mice that overexpressed COX-2 in the epidermis were unexpectedly resistant to tumor development under the classical 7,12-dimethylbenz[a]anthracene-TPA protocol. In the present study, we employed a proteomic approach of 2-dimensional gel electrophoresis (2-DE) and mass spectrometry to profile differentially expressed proteins in the epidermis of K14.COX-2 TG and wild-type control mice. Various 2-DE approaches were used to identify the maximum number of differentially expressed proteins: 20 for untreated samples, 3 for acetone-treated samples, and 22 for TPA-treated samples. These proteins include 14-3-3 sigma, numerous actin fragments, actin filament related proteins cofilin-1 and destrin, galectin-3, galectin-7, prohibitin, S100A6, S100A9, and many others. The differential expression of galectin-3, galectin-7, S100A9 was validated by Western blot analysis and/or immunohistochemical analysis. The current data suggest that some of the differentially expressed proteins might increase apoptosis and cell cycle arrest, which, in turn, may provide insight into the role of COX-2 in skin tumorigenesis.  相似文献   

2.
To identify biomarkers associated with the development of hepatocellular carcinoma (HCC) in CuZn superoxide dismutase (CuZnSOD, Sod1) deficient mice, 2-DE followed by MS analysis was carried out with liver samples obtained from 18-month-old Sod1-/- and +/+ mice. The intracellular Ca binding protein, regucalcin (RGN), showed a divergent alteration in Sod1-/- samples. Whereas elevated RGN levels were observed in -/- samples with no obvious neoplastic changes, marked reduction in RGN was observed in -/- samples with fully developed HCC. GST mu1 (GSTM1), on the other hand, showed a significant increase only in the neoplastic regions obtained from Sod1-/- livers. No change in GSTM1 was observed in the surrounding normal tissues. Marked reduction was observed in two intracellular lipid transporters, fatty acid binding protein 1 (FABP1) and major urinary protein 11 and 8 (MUP 11&8), in Sod1-/- samples. Analysis of additional samples at 18-22 months of age showed a three-fold increase in enolase activities in Sod1-/- livers. Consistent with previous findings, carbonic anhydrase 3 (CAIII) levels were significantly reduced in Sod1-/- samples, and immunohistochemical analysis revealed that the reduction was not homogenous throughout the lobular structure in the liver.  相似文献   

3.
We demonstrated previously that 5-lipoxygenase (5-LO), a key enzyme in leukotriene biosynthesis, can be phosphorylated by p38 MAPK-regulated MAPKAP kinases (MKs). Here we show that mutation of Ser-271 to Ala in 5-LO abolished MK2 catalyzed phosphorylation and clearly reduced phosphorylation by kinases prepared from stimulated polymorphonuclear leukocytes and Mono Mac 6 cells. Compared with heat shock protein 27 (Hsp-27), 5-LO was a weak substrate for MK2. However, the addition of unsaturated fatty acids (i.e. arachidonate 1-50 microm) up-regulated phosphorylation of 5-LO, but not of Hsp-27, by active MK2 in vitro, resulting in a similar phosphorylation as for Hsp-27. 5-LO was phosphorylated also by other serine/threonine kinases recognizing the motif Arg-Xaa-Xaa-Ser (protein kinase A, Ca(2+)/calmodulin-dependent kinase II), but these activities were not increased by fatty acids. HeLa cells expressing wild type 5-LO or S271A-5-LO, showed prominent 5-LO activity when incubated with Ca(2+)-ionophore plus arachidonate. However, when stimulated with only exogenous arachidonic acid, activity for the S271A mutant was significantly lower as compared with wild type 5-LO. It appears that phosphorylation at Ser-271 is more important for 5-LO activity induced by a stimulus that does not prominently increase intracellular Ca(2+) and that arachidonic acid stimulates leukotriene biosynthesis also by promoting this MK2-catalyzed phosphorylation.  相似文献   

4.
脊髓全横断损伤后差异表达蛋白的蛋白质组学分析   总被引:4,自引:0,他引:4  
 对脊髓全横断损伤前后的大鼠脊髓全蛋白质进行双向凝胶电泳,借助PDQuest软件从中找出差异表达蛋白质点.应用基质辅助激光解吸电离串联质谱,对差异表达的蛋白质点进行鉴定,成功鉴定出18种蛋白质.脊髓损伤3 d后表达上调的蛋白质有巨噬细胞游走抑制因子、S期激酶相关蛋白 1、热休克蛋白 27、多配体蛋白聚糖 3、T细胞受体β链可变区、膜联蛋白Ⅲ、腺苷酸激酶 1、半乳凝素 3、丙酮酸脱氢酶、磷脂酶 B、嗜铬粒蛋白 A、热休克蛋白70凝结蛋白 1;同时表达下调的蛋白质有磷酸丙糖异构酶、神经鞘氨醇磷酸化受体、热休克蛋白10、肽酰 脯氨酰 顺反式异构酶 A多数差异蛋白质涉及到神经细胞的增殖、凋亡、应激反应等过程,为进一步阐明中枢神经系统的损伤和修复机制提供了理论依据.摘要 对脊髓全横断损伤前后的大鼠脊髓全蛋白质进行双向凝胶电泳,借助PDQuest软件从中找出差异表达蛋白质点.应用基质辅助激光解吸电离串联质谱,对差异表达的蛋白质点进行鉴定,成功鉴定出18种蛋白质.脊髓损伤3 d后表达上调的蛋白质有巨噬细胞游走抑制因子、S期激酶相关蛋白 1、热休克蛋白 27、多配体蛋白聚糖 3、T细胞受体β链可变区、膜联蛋白Ⅲ、腺苷酸激酶 1、半乳凝素 3、丙酮酸脱氢酶、磷脂酶 B、嗜铬粒蛋白 A、热休克蛋白70凝结蛋白 1;同时表达下调的蛋白质有磷酸丙糖异构酶、神经鞘氨醇磷酸化受体、热休克蛋白10、肽酰 脯氨酰 顺反式异构酶 A多数差异蛋白质涉及到神经细胞的增殖、凋亡、应激反应等过程,为进一步阐明中枢神经系统的损伤和修复机制提供了理论依据.  相似文献   

5.
Mancozeb, ethylene(bis)dithiocarbamate fungicides, has been well documented in the literature as a multipotent carcinogen, but the underlying mechanism remains unrevealed. Thus, mancozeb has been selected in this study with the objective to decipher the molecular mechanism that culminates in carcinogenesis. We employed two-dimensional gel electrophoresis and mass spectrometry to generate a comparative proteome profile of control and mancozeb (200?mg/kg body weight) exposed mouse skin. Although many differentially expressed proteins were found, among them, two significantly upregulated proteins, namely, S100A6 (Calcyclin) and S100A9 (Calgranulin-B), are known markers of keratinocyte differentiation and proliferation, which suggested their role in mancozeb-induced neoplastic alterations. Therefore, we verified these alterations in the human system by using HaCaT cells as an in vitro model for human skin keratinocyte carcinogenesis. Upregulation of these two proteins upon mancozeb (0.5?μg/mL) exposure in HaCaT cells indicated its neoplastic potential in human skin also. This potential was confirmed by increase in number of colonies in colony formation and anchorage-independent growth assays. Modulation of S100A6/S100A9 targets, elevated phosphorylation of extracellular signal regulated kinase (ERK1/2), Elk1, nuclear factor- kappa B and cell division cycle 25 C phosphatase, and cyclin D1 and cyclooxygenase-2 upregulation was seen. In addition, PD98059 (ERK1/2 inhibitor) reduced cell proliferation induced by mancozeb, confirming the involvement of ERK1/2 signaling. Conclusively, we herein present the first report asserting that the mechanism involving S100A6 and S100A9 regulated ERK1/2 signaling underlies the mancozeb-induced neoplastic potential in human skin.  相似文献   

6.
Galectins are a family of β-galactoside-binding lectins that contain a conserved carbohydrate recognition domain (CRD). They exhibit high affinities for small β-galactosides as well as variable binding specificities for complex glycoconjugates. Structural and biochemical analyses of the mechanism governing specific carbohydrate recognition provide a useful template to elucidate the function of these proteins. Here we report the crystal structures of the human galectin-9 N-terminal CRD (NCRD) in the presence of lactose and Forssman pentasaccharide. Mouse galectin-9 NCRD, the structure of which was previously solved by our group, forms a non-canonical dimer in both the crystal state and in solution. Human galectin-9 NCRD, however, exists as a monomer in crystals, despite a high sequence identity to the mouse homologue. Comparative frontal affinity chromatography analysis of the mouse and human galectin-9 NCRDs revealed different carbohydrate binding specificities, with disparate affinities for complex glycoconjugates. Human galectin-9 NCRD exhibited a high affinity for Forssman pentasaccharide; the association constant for mouse galectin-9 NCRD was 100-fold less than that observed for the human protein. The combination of structural data with mutational studies demonstrated that non-conserved amino acid residues on the concave surface were important for determination of target specificities. The human galectin-9 NCRD exhibited greater inhibition of cell proliferation than the mouse NCRD. We discuss the biochemical and structural differences between highly homologous proteins from different species.  相似文献   

7.
Jiang J  Wang J  Li A  Zhang Y  Sokolov V  Wang Y 《Genetika》2012,48(4):480-487
Comparative proteomics of seed filling between yellow-seeded progeny from somatic hybrids Brassica napus-Sinapis alba and black-seeded parent (B. napus) were taken out using two-dimensional electrophoresis (2-DE). The process indicated distinct differences in 2, 3, 4, 5, 6 weeks after fertilization (WAF) and mature seed. A total of 8 out of the 27 discriminate proteins were identified by mass spectrum analysis and MASCOT comparison, including protein kinase, enolase, triosephosphate isomerase, and dioxygenase. PCR primers contrived for the putative genes were applied for further identification of progenies and both parents, which indicated that spot A3-5 might be the novel protein of intergeneric hybrid, i.e., A5-2 derived from S. alba. Applying these specific primers, this study demonstrates that the new yellow-seeded germplasm is different from the existing yellow seed materials of rapeseed.  相似文献   

8.
S100A16, a novel calcium-binding protein of the EF-hand superfamily   总被引:1,自引:0,他引:1  
S100A16 protein is a new and unique member of the EF-hand Ca(2+)-binding proteins. S100 proteins are cell- and tissue-specific and are involved in many intra- and extracellular processes through interacting with specific target proteins. In the central nervous system S100 proteins are implicated in cell proliferation, differentiation, migration, and apoptosis as well as in cognition. S100 proteins became of major interest because of their close association with brain pathologies, for example depression or Alzheimer's disease. Here we report for the first time the purification and biochemical characterization of human and mouse recombinant S100A16 proteins. Flow dialysis revealed that both homodimeric S100A16 proteins bind two Ca(2+) ions with the C-terminal EF-hand of each subunit, the human protein exhibiting a 2-fold higher affinity. Trp fluorescence variations indicate conformational changes in the orthologous proteins upon Ca(2+) binding, whereas formation of a hydrophobic patch, implicated in target protein recognition, only occurs in the human S100A16 protein. In situ hybridization analysis and immunohistochemistry revealed a widespread distribution in the mouse brain. Furthermore, S100A16 expression was found to be astrocyte-specific. Finally, we investigated S100A16 intracellular localization in human glioblastoma cells. The protein was found to accumulate within nucleoli and to translocate to the cytoplasm in response to Ca(2+) stimulation.  相似文献   

9.
Sod2 is the major salt tolerance plasma membrane protein of Schizosaccharomyces pombe. It functions to remove excess intracellular sodium (or lithium) in exchange for protons. We investigated the role of cysteine residues and created a cysteine-free Sod2 protein. Each cysteine residue of the ten present was individually mutated to serine and the different proteins expressed and characterized in S. pombe. Western blotting revealed that all the individual mutant proteins were expressed. We examined the ability of the mutant proteins to confer salt tolerance to S. pombe with the endogenous Sod2 protein deleted. Only proteins with C26S and C374S mutations were partially reduced in their ability to confer salt tolerance. Additionally, they showed a change in conformation in comparison to the wild-type protein, indicated by differential sensitivity to trypsin. Deletion of all the cysteine residues of Sod2 resulted in a functional protein that was expressed in S. pombe at levels similar to the wild type and also conferred salt tolerance. The conformation of the cysteine-free Sod2 protein was not altered relative to the wild-type protein. We examined the accessibility of amino acids of the cysteineless protein present on putative extracellular loop 2. A cysteine placed at position Ala119 was accessible to externally applied [2-(trimethylammonium)ethyl] methane thiosulfonate bromide. The results demonstrate that cysteines in the Sod2 protein can be changed to serine residues resulting in an expressed, functional protein. The utility of the cysteine-free Sod2 protein for determination of topology and amino acid accessibility is demonstrated.  相似文献   

10.
Many lines of evidence indicate that neoplastic transformation of cells occurs by a multistep process. For neoplastic transformation of normal human cells, they must be first immortalized and then be converted into neoplastic cells. It is well known that the immortalization is a critical step for the neoplastic transformation of cells and that the immortal phenotype is recessive. Thus, we investigated proteins downregulated in immortalized cells by two-dimensional gel electrophoresis. As a result, S100C, a Ca(2+)-binding protein, was dramatically downregulated in immortalized human fibroblasts compared with their normal counterparts. When the cells reached confluence, S100C was phosphorylated on threonine 10. Then the phosphorylated S100C moved to and accumulated in the nuclei of normal cells, whereas in immortalized cells it was not phosphorylated and remained in the cytoplasm. Microinjection of the anti-S100C antibody into normal confluent quiescent cells induced DNA synthesis. Furthermore, when exogenous S100C was compelled to localize in the nuclei of HeLa cells, their DNA synthesis was remarkably inhibited with increase in cyclin-dependent kinase inhibitors such as p16(Ink4a) and p21(Waf1). These data indicate the possible involvement of nuclear S100C in the contact inhibition of cell growth.  相似文献   

11.
12.
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.  相似文献   

13.
Kang HJ  Koh KH  Yang E  You KT  Kim HJ  Paik YK  Kim H 《Proteomics》2006,6(4):1151-1157
Most gastrointestinal stromal tumors (GIST) have activating mutations in either KIT or PDGFRA. However, a small subset of GIST lacks either mutation. To investigate the molecular characteristics of GIST according to mutation type, protein expression profiles in 12 GIST (2 cases with PDGFRA mutations, 8 cases with KIT mutations and 2 cases lacking either mutation) were analyzed using 2-DE and MALDI-TOF-MS. Comparative analysis of the respective spot patterns using 2-DE showed that 15 proteins were differently expressed according to the mutation status. Expression levels of septin and heat shock protein (HSP) 27 were increased in GIST with KIT mutations and annexin V was overexpressed in GIST lacking either mutation. Among the 15 proteins, overexpression of 5 proteins [annexin V, high mobility group protein 1 (HMGB1), C13orf2, glutamate dehydrogenase 1 and fibrinogen beta chain] and decreased expression of RoXaN correlated with a higher tumor grade. These findings suggest that differential protein expression can be used as a diagnostic biomarker. Moreover, it may play a role in the development and progression of GIST according to activating mutation type, as these proteins have been shown to be involved in tumor metastasis, apoptosis and immune response.  相似文献   

14.
The Ca(2+)-binding S100A1 protein displays a specific and high expression level in the human myocardium and is considered to be an important regulator of heart contractility. Diminished protein levels detected in dilated cardiomyopathy possibly contribute to impaired Ca(2+) handling and contractility in heart failure. To elucidate the S100A1 signaling pathway in the human heart, we searched for S100A1 target proteins by applying S100A1-specific affinity chromatography and immunoprecipitation techniques. We detected the formation of a Ca(2+)-dependent complex of S100A1 with SERCA2a and PLB in the human myocardium. Using confocal laser scanning microscopy, we showed that all three proteins co-localize at the level of the SR in primary mouse cardiomyocytes and confirmed these results by immunoelectron microscopy in human biopsies. Our results support a regulatory role of S100A1 in the contraction-relaxation cycle in the human heart.  相似文献   

15.
曾亮  朱红  邓亚平  陈森林  刘志红 《生物磁学》2009,(16):3049-3052,3029
目的:通过比较早期宫颈癌和中一晚期宫颈癌的差异表达蛋白,以发现与宫颈癌临床分期相关蛋白,为临床预后和复发的预测提供新指标。方法:收集早期宫颈癌和中一晚期宫颈癌组织标本,提取组织总蛋白进行二维凝胶电泳,选择部分差异表达蛋白进行MALDI—TOF质谱分析和生物信息学分析进行蛋白质鉴定,进一步应用WestemBlot和免疫组织化学技术检测部分差异表达蛋白的表达情况。结果:建立了早期宫颈癌组和中一晚期宫颈癌组的二维凝胶电泳图谱,其中两组的平均蛋白质点数分别为1098±23、1142±21,通过进行质谱分析和生物信息学查询,与早期宫颈癌组比较,鉴定了在中一晚期组下调的蛋白4个。包括HemoglobinsubunitbetaHB、caspase-14、galectin-7、CK19;中-晚期组上调的蛋白8个,包括NMP238、HSP70、Calmodulin-like5、S100A9。WesternBlot和免疫组化检测结果均显示S100A9在中-晚期组中的表达高于早期组,CK19在早期组中的表达高于中-晚期组。结论:早期宫颈癌和中-晚期宫颈癌中存在着差异表达蛋白,这些蛋白可能成为宫颈癌预后和复发预测的生物标志物。  相似文献   

16.
S100 proteins form a growing subfamily of proteins related by Ca2+-binding motifs to the Efhand Ca2+-binding protein superfamily. By analyzing a human lung cancer cell line subtraction cDNA library, we have identified and characterized a new member of the human S100 family that we named S100A14 (GenBank acc. no. NM_020672). It encodes a mRNA present in several normal human tissues of epithelial origin, with the highest level of expression in colon. The full-length cDNA is 1067 nt in length, with a coding region predicting a protein of 104 amino acids that is 68% homologous to the S100A13 protein. The deduced amino acid sequence of the human S100A14 and its mouse homolog (identified as GenBank entry) contains two EF-hand Ca2+-binding domains, a myristoylation motif, a glycosylation site, and several potential protein kinase phosphorylation sites. We have mapped this gene to human chromosome 1q21, within a region where at least 15 other S100 genes are tightly clustered. A 3.2-kb genomic fragment containing the entire S100A14 was cloned and sequenced. The gene is split into four exons and three introns spanning a total of 2165 bp of genomic sequence. We examined the intracellular distribution of the epitope-tagged S100A14 protein in two human lung carcinoma cell lines and one immortalized monkey cell line. Pronounced staining was observed in the cytoplasm, suggesting an association with the plasma membrane and in the perinuclear area. We also provide evidence for heterogenic expression of S100A14 in tumors, demonstrating its overexpression in ovary, breast, and uterus tumors and underexpression in kidney, rectum, and colon tumors, a pattern suggesting distinct regulation with potentially important functions in malignant transformation.  相似文献   

17.
Protein translocation between different subcellular compartments might play a significant role in various signal transduction pathways. The S100 family is comprised of the multifunctional, small, acidic proteins, some of which translocate in the form of vesicle-like structures upon increase in intracellular Ca(2+) levels. Previously, cells were fixed before and after calcium activation in order to examine the possible relocation of S100 proteins. In this study, we were able to track the real-time translocation. We compared the localization of endogenous S100A11 to that of the S100A11-green fluorescent protein. The application of thapsigargin, an agent increasing intracellular Ca(2+) levels, resulted in the relocation of the S100A11. In contrast, addition of EGTA, which specifically binds Ca(2+), either inhibited the ongoing process of translocation or prevented its induction. Since translocation was not affected by treatment with brefeldin A, it appears that S100A11 relocates in an endoplasmic reticulum-Golgi-independent pathway. Furthermore, the depolymerization of actin filaments by amlexanox did not affect the capacity of S100A11 to translocate. However, the time course treatment with demecolcine, which depolymerizes tubulin filaments, resulted in cease of translocation, suggesting that the tubulin network is required for this process.  相似文献   

18.
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.  相似文献   

19.
S100A1, a Ca2+-sensing protein of the EF-hand family, is most highly expressed in myocardial tissue, and cardiac S100A1 overexpression in vitro has been shown to enhance myocyte contractile properties. To study the physiological consequences of S100A1 in vivo, transgenic mice were developed with cardiac-restricted overexpression of S100A1. Characterization of two independent transgenic mouse lines with approximately 4-fold overexpression of S100A1 in the myocardium revealed a marked augmentation of in vivo basal cardiac function that remained elevated after beta-adrenergic receptor stimulation. Contractile function and Ca2+ handling properties were increased in ventricular cardiomyocytes isolated from S100A1 transgenic mice. Enhanced cellular Ca2+ cycling by S100A1 was associated both with increased sarcoplasmic reticulum Ca2+ content and enhanced sarcoplasmic reticulum Ca2+-induced Ca2+ release, and S100A1 was shown to associate with the cardiac ryanodine receptor. No alterations in beta-adrenergic signal transduction or major cardiac Ca2+-cycling proteins occurred, and there were no signs of hypertrophy with chronic cardiac S100A1 overexpression. Our findings suggest that S100A1 plays an important in vivo role in the regulation of cardiac function perhaps through interacting with the ryanodine receptor. Because S100A1 protein expression is down-regulated in heart failure, increasing S100A1 expression in the heart may represent a novel means to augment contractility.  相似文献   

20.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号