首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the community structure of benthic algae inside and outside pomacentrid damselfish (Stegastes nigricans) territories in a moat at Sesoko Island, Okinawa, Japan. S. nigricans maintained “algae farms” that were dominated by the filamentous rhodophyte, Womersleyella setacea. Species richness and biomass were higher inside damselfish territories than outside, while species diversity and evenness were higher outside. Detrended correspondence analysis (DCA) based on species composition showed that the dominance of W. setacea was maintained throughout the year in all samples collected from inside damselfish territories. The observed strong dominance of filamentous rhodophytes was consistent with the findings of most studies on damselfish territories worldwide. However, the dominance of a single species of alga and low species diversity inside the territories was in contrast to the findings of previous studies, in which the reduction of grazing pressure caused intermediate disturbance and enhanced algal species diversity. This discrepancy in algal species diversity inside the damselfish territories seems to have been caused by unique characteristics of the alga and the fish. W. setacea traps sediment, which reduces the availability of firm substrata for attachment and inhibits the recruitment of some algae. Moreover, S. nigricans “weeds” indigestible calcareous and thicker algae. The algal assemblage outside damselfish territories varied among samples, and included mat-forming cyanophytes (Calothrix aeruginosa and Calothrix codicola), a prostrate laminar phaeophyte (Padina sp.), thin and small-scaled algae (Cladophora sp. and Feldmannia indica), finely branched filamentous rhodophytes (Taenioma perpusillum and Herposiphonia obscura), and a coarsely branched rhodophyte (Gelidiopsis variabilis).

We placed artificial slate plates inside and outside damselfish territories, and showed that the W. setacea inside territories gradually increased in biomass, reaching the same levels of biomass and dominance as W. setacea on natural substrata. Outside the territories, the algal assemblage underwent succession from early colonizers, i.e., thin and small-scaled algae, to grazing-resistant algae such as mat-forming cyanophytes and prostrate laminar Padina sp. Under heavy grazing, the flora outside the territories was composed of early colonizers, grazing-resistant algae, and scattered erect algae that had probably escaped grazing by chance.

Our findings suggest that sediment trapped by the turf of W. setacea inhibited recruitment of some algae, and that moderate cropping and selective weeding by S. nigricans excluded grazing-resistant algae and prevented early colonizers and competitively superior algae from out-competing W. setacea. Consequently, low species diversity and a high-biomass “farm” suitable for harvesting was maintained.  相似文献   


2.
Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes''s territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans''s territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease.  相似文献   

3.
Many damselfishes exclude other grazers from their territories and “farm” filamentous algae within their territories. In this study the indirect effect of damselfish territories on faunal composition and abundance of internal bioeroders of dead Acropora formosa (Dana, 1846) was investigated in territories of two damselfish species, Stegastes nigricans (Lacepède, 1802) and Plectroglyphidodon lacrymatus (Quoy and Gaimard, 1825). S. nigricans tends to be more protective and defend their territories more aggressively than P. lacrymatus. Newly killed branches of A. formosa were placed inside and outside damselfish territories, for 1 or 2 years, at a coral reef near Zanzibar, Tanzania. As predicted, the coral branches became covered with more filamentous algae in the S. nigricans territories than in the controls, with intermediate levels in the P. lacrymatus territories. Among the internal bioeroding fauna, polychaetes were by far the most common group. In total, there were significantly more borers in the first year than the second, which was mainly due to a high abundance of sabellids. Furthermore, sabellids were significantly more abundant in control areas and in the P. lacrymatus territories compared to the S. nigricans territories. However, many other genera showed the opposite pattern, with more polychaetes in the fish territories compared to the controls. There was also a clear difference in assemblage structure between S. nigricans territories and controls. Thus, we found strong effects of whether a piece of coral was placed inside or outside a damselfish territory on the abundance of many of the bioeroding taxa. We discuss multiple reasons for these indirect effects of the territories, including that deposit feeding bioeroders may benefit from the dense algal turf found inside the territories whereas suspension feeding bioeroders may benefit from substrate with less filamentous algae found outside territories. Considering our results in the context of the large areas of coral reefs that typically are defended as territories by damselfishes, these fish are likely to have a considerable impact on the boring community of a coral reef.  相似文献   

4.
The effects of territorial damselfish on coral reef benthos have been well-studied for a few relatively large-bodied species with visually distinct territories. Despite a growing body of research demonstrating their abundance, and their effects on algae, corals and other grazers, there has been little research on the effects of the territorial damselfish community as a whole. This study investigated the space occupation, territory composition, and diet of ten damselfish species at three locations: Magnetic and Orpheus Islands (Great Barrier Reef), and Kimbe Bay (Papua New Guinea). Territories were measured, and the composition of benthic communities inside and outside territories was assessed both in situ and from algal collections. The stomach contents of territorial damselfishes were also quantified. Although the larger, previously well-studied species had the most visible effect on the benthic community in their territories, all the smaller species also significantly affected the algal composition, normally with an increase of palatable algae. However, the composition of algal assemblages inside the territories of different species varied considerably. Damselfish territories were highly individual, not just among species, but also among locations. Diets were diverse and indicated a greater degree of omnivory and detritivory than previously thought. At all locations, territories occupied a substantial proportion of the substratum: >25% on Magnetic Island, >50% at Orpheus Island, and ∼50% in Kimbe Bay. Within individual zones, this figure was as high as 70%. The contribution of territorial damselfishes to a range of benthic patterns and processes is considerable, and future benthic studies may need to distinguish more closely between territory and non-territory areas. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.  相似文献   

6.
As coral reefs are home to dense aggregations of a variety of species, aggressive territoriality is often a critical component of individual behavior. Identification and assessment of the risk posed by intruders is crucial to defending a territory, and fishes on coral reefs have been found to attend to body shape, body size, and coloration when responding to intruders. We examined the extent to which dusky damselfish (Stegastes adustus) discriminate among distinct categories of intruders by measuring the distance at which a fish attacks an intruder and the relative intensity and frequency of those attacks. We found that S. adustus discriminated among perceived threats, attacking conspecifics more intensely and more often than egg-predators and herbivores, and showing a trend of attacking those groups more often than invertebrate-feeders, which do not compete with damselfish for resources. Furthermore, territory holders attacked initial-phase wrasses from a farther distance than terminal-phase wrasses, suggesting that they can discriminate among classes of individuals within a species other than their own. Dusky damselfish thus exhibit the ability to make fine distinctions among intruders in a diverse ecosystem.  相似文献   

7.
Foraminiferal assemblages were studied in ten atoll lagoons in the central Tuamotu Archipelago, French Polynesia, in order to determine which environmental factors influence their distribution. Among geomorphological conditions, the degree of aperture has a major influence on lagoonal communities. Cluster and factor analyses reveal a clear contrast between the foraminiferal associations located in the peripheral and central areas of the lagoons, showing the effect of the vicinity of coral reef, and a limited post-mortem transport of species from the periphery toward the center of the lagoons. The rarity of planktonic species indicates limited penetration of the lagoon by planktonic forms, including planktonic stages of benthic colonizers. Colonization of these remote lagoons, even those with a high degree of aperture, may thus require long periods. Therefore, the Holocene transgression that flooded the deeper lagoons before the shallower ones, allowing a longer colonization period, may have contributed to the higher species richness of foraminifera within them.  相似文献   

8.
For coral reef fish with an obligate relationship to their habitat, like Pomacentrid damselfish, choosing a suitable home amongst the reef structure is key to survival. A surprisingly small number of studies have examined patterns in adult damselfish distributions compared to other ontogenetic phases. The aim of this study was to determine which reef and coral colony characteristics explained adult damselfish distribution patterns in a Red Sea reef. The characteristics investigated were reef type (continuous or patchy), coral species (seven species of Acropora), and coral morphology (coral size and branching density). The focal damselfish species were Dascyllus aruanus, D. marginatus, Chromis viridis, and C. flavaxilla. Occupancy (presence or absence of resident damselfish), group size and fish species richness were not significantly different between the seven Acropora species. However, within each coral species, damselfish were more likely to occupy larger coral colonies than smaller coral colonies. Occupancy rates were also higher in patchy reef habitats than in continuous sections of the reef, probably because average coral colony size was greater in patchy reef type. Fish group size increased significantly with coral colony volume and with larger branch spacing. Multi-species groups of fish commonly occurred and were increasingly likely with reduced branching density and increased coral size.  相似文献   

9.
Habitat selection by coral reef fish during initial settlement has been shown to depend on various biotic and abiotic characteristics. However, relatively little is known of the factors influencing habitat choice by adults during post-settlement processes such as relocation or migration. In this study, we first characterised the habitat of longfin damselfish (Stegastes diencaeus Jordan and Rutter) territories to quantify territory variability. Characteristics such as percentage cover of rock, sand, live coral and distance from sand were highly variable, while territory area, turf and macro algae cover were relatively uniform across territories.We then assessed the importance of specific habitat characteristics by experimentally removing damselfish and measuring recolonisation times in relation to these characteristics. The presence of nest sites markedly increased the speed of territory recolonisation after experimental removals. Other variable territory characteristics such as substrate type, rugosity and the presence of cleaning stations did not affect recolonisation speed. In general, males recolonised territories faster than females, and males were more likely to recolonise territories previously owned by males with an active nest site. Thus, intraspecific competition for high-quality nest sites may generate sex differences in territory relocation and highly stable sex-specific patterns of adult distribution.  相似文献   

10.
By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral, Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfish Dascyllus flavicaudus (yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv/Fm) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish-derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.  相似文献   

11.
Hata H  Kato M 《Biology letters》2006,2(4):593-596
In cultivation mutualisms, farming animals prepare fields for cultivars, enhance their growth and harvest them. For example, in terrestrial ecosystems, plant-herbivore cultivation mutualisms arose between humans and their crops only relatively recently. We discovered an obligate cultivation mutualism between a damselfish and an alga in a coral reef ecosystem. The damselfish, Stegastes nigricans, manages algal farms through territorial defence against the invading grazers and through weeding of unpalatable algae. As a result, the algal farms of S. nigricans are dominated by one species, Polysiphonia sp. We performed an exhaustive survey of algal assemblages inside and outside the territories of five damselfish species around the Ryukyu Islands, Japan, using molecular and morphological characteristics. Polysiphonia sp. 1 grew exclusively inside the farms of S. nigricans, and never elsewhere. Since only Polysiphonia sp. 1 is harvested and consumed by the damselfish as a staple food, this interdependent relationship is an obligate cultivation mutualism. This is the first record of an obligate plant-herbivore cultivation mutualism in a marine ecosystem. Our data also suggest that three other Polysiphonia species are facultatively mutual with, commensal with, or parasitic on other damselfish species.  相似文献   

12.
Cold-water coral ecosystems are characterised by a high diversity and population density. Living and dead foraminiferal assemblages from 20 surface sediment samples from Galway and Propeller Mounds were analysed to describe the distribution patterns of benthic foraminifera on coral mounds in relation to different sedimentary facies. Hard substrates were examined to assess the foraminiferal microhabitats and diversities in the coral framework. We recognised 131 different species, of which 27 prefer an attached lifestyle. Epibenthic species are the main constituents of the living and dead foraminiferal assemblages. The frequent species Discanomalina coronata was associated with coral rubble, Cibicides refulgens showed preference to the off-mound sand veneer, and Uvigerina mediterranea displayed abundance maxima in the main depositional area on the southern flank of Galway Mound, and in the muds around Propeller Mound. The distribution of these species is rather governed by their specific ecological demands and microhabitat availability than by the sedimentary facies. Benthic foraminiferal assemblages from coral mounds fit well into basin-wide-scale distribution patterns of species along the western European continental margin. The diversity of the foraminiferal faunas is not higher on the carbonate mounds as in their vicinity. The living assemblages show a broad mid-slope diversity maximum between 500 and 1,300 m water depth, which is the depth interval of coral mound formation at the Celtic and Amorican Margin. The foraminiferal diversity maximum is about 700 m shallower than comparable maxima of nematodes and bivalves. This suggests that different processes are driving the foraminiferal and metazoan diversity patterns.  相似文献   

13.
《Marine Micropaleontology》2006,58(2):103-113
Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30–63 μm, 63–125 μm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.  相似文献   

14.
15.
Herbivory is an important mechanism affecting algal succession, particularly on coral reefs where the relationship between algae and corals is largely controlled by herbivores. However, different functional groups of herbivores may have contrasting effects on succession, which may explain different trajectories of coral reef recovery after disturbance. Here, the effects of different herbivore groups (roving herbivores = foragers and territorial damselfish = farmers) were isolated by a multi-factorial experiment carried out on a coastal coral reef with high macroalgal cover, high farmer densities and relatively low forager abundance. The effects of foragers and farmers were distinguished by monitoring algal succession on settlement tiles placed inside and outside exclusion cages, with orthogonal treatments established inside and outside damselfish territories (with appropriate cage controls). Within 12 months, algal assemblages on ungrazed tiles inside exclusion cages proceeded rapidly from fine filamentous turfs, to corticated algae, to tough erect (e.g. Amphiroa spp.) and foliose (e.g. Peyssonnellidae) calcified algae. Farmers had a dramatic impact on succession, essentially arresting the development of the algal community at a point where it was dominated by palatable filamentous algae of the genus Polysiphonia. Fleshy macroalgae such as Sargassum spp. were excluded from farmer territories. In contrast, foragers did not suppress fleshy macroalgae, but rather, appeared to decelerate succession and promote a relatively diverse assemblage. In contrast to forager-dominated reefs, farmer territories did not appear to function solely as forager exclusion areas or promote algal diversity as a result of intermediate grazing pressure. The relatively strong effects of farmers observed here may represent a future scenario for coral reefs that are increasingly subject to overfishing of large grazing fishes.  相似文献   

16.
The raised coral reef sequences at Kish Island provide a rare window into the depositional setting and paleoenvironment of a high-latitude, shallow-water coral reef that developed under turbid conditions in the Persian Gulf during Marine Isotope Stage 7 (~200 to 250?ka). Six sedimentary facies and eight foraminiferal assemblages can be identified throughout the sequence. A ninth assemblage can be defined for the modern subtidal realm. At the base of the sequence is a marl rich in hyaline foraminifera (Elphidium, Ammonia, Asterorotalia, Bulimina, Nonion, and Quinqueloculina) and ostracods, which was deposited in about 30–40?m water depth in a turbid deltaic setting. Shallowing resulted in the marl becoming sandy, and changing to a mollusc-rich facies with rare foraminifera (mostly smaller miliolid taxa) that formed the substrate for coral recruitment. The coral marl layer contains many large corals embedded in situ in an aggregate and coralline algae-rich marl. Two abundance peaks in the foraminifera occur at the base and mid-way through this layer, which also correspond to a change from Murrayinella-dominated to Placopsilina-dominated assemblages, indicating deepening and more open-marine conditions, but elevated turbidity. Towards the top of the layer, abundance of foraminifera decreases and miliolid foraminifera become dominant. The top-most layer is dominated by coral and mollusc fragments and has an Amphistegina-rich reef-related assemblage. Of the Late Pleistocene foraminiferal assemblages, the Murrayinella-, Pararotalia-, and Placopsilina-dominated assemblages are no longer present in the modern gulf for unknown reasons. Of the other five assemblages, only the Amphistegina assemblage is found within proximity to the modern Kish Island. The Elphidium and Asterorotalia-Bulimina assemblages are from deeper areas of the gulf. The Ammonia and Quinqueloculina assemblages occur in lagoonal sediments on the Arabian side of the gulf. Like the modern Persian Gulf, the diversity of foraminifera was low (~80 common species) during the Pleistocene and does not correlate with foraminiferal abundance.  相似文献   

17.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

18.
The well-exposed outcrops of the Bujan, northern Abadeh, and Varkan stratigraphic sections of the Qom Formation in the Iranian part of the “northeastern margin” of the Tethyan Seaway were characterized by abundant biogenic components dominated by foraminifers, coralline red algae, and corals. The Qom Formation is Rupelian–Chattian in age in the study areas. Based on the field investigations, depositional textures, and dominant biogenic components, fifteen (carbonate and terrigenous) facies were identified. These facies can be grouped into four depositional environments: open marine, open lagoon, restricted lagoon, and continental braided streams. The marine facies were deposited on a ramp-type platform. The euphotic inner ramp was characterized mainly by imperforate foraminifera, with co-occurrence of some perforate taxa. These facies passed basinward into a mesophotic (middle) ramp with Neorotalia packstone (F5), coral, coralline algae, perforate foraminiferal packstone (F4), and coral patch reefs (F7). The deeper, oligophotic ramp facies were marly packstones with planktonic and hyaline benthic foraminifera, including large lepidocyclinids and nummulitids. The abundance of perforate foraminifera and the absence of facies indicating restricted lagoonal or intertidal settings suggest that the Varkan section was deposited mainly in open marine settings with normal salinity. The prevalence of larger benthic foraminiferal and red algal assemblages, together with the coral facies, indicates that carbonate production took place in tropical–subtropical waters.  相似文献   

19.
以外来入侵植物南美蟛蜞菊和本地近缘种蟛蜞菊为对象,通过温室模拟3种水位波动模式(水位无波动,水位波动模式分别为15 cm-0 cm-15 cm和0 cm-15 cm-0 cm)交叉5种定植模式(试验容器内分别为入侵种单株、本土种单株、入侵种6株、本土种6株以及2物种各3株混种)的试验,研究水位波动对入侵植物和本地近缘种生长繁殖性状及种内种间相互作用的影响.结果表明: 水位波动显著降低了南美蟛蜞菊和蟛蜞菊的总生物量、茎生物量、叶生物量、根生物量、茎长、节点数、叶片数及叶面积,对南美蟛蜞菊和蟛蜞菊种内及种间竞争系数的影响均显著.水位波动改变了南美蟛蜞菊的种内和种间竞争关系,说明入侵植物南美蟛蜞菊对水位波动更为敏感,对环境改变表现出更强的适应性.  相似文献   

20.
Environmental SSU rDNA‐based surveys are contributing to the dramatic revision of eukaryotic high‐level diversity and phylogeny as the number of sequence data increases. This ongoing revolution gives the opportunity to test for the presence of some eukaryotic taxa in environments where they have not been found using classical microscopic observations. Here, we test whether the foraminifera, a group of single‐celled eukaryotes, considered generally as typical for the marine ecosystems are present in soil. We performed foraminiferal‐specific nested PCR on 20 soil DNA samples collected in contrasted environments. Unexpectedly, we found that the majority of the samples contain foraminiferal SSU rDNA sequences. In total, we obtained 49 sequences from 17 localities. Phylogenetic analysis clusters them in four groups branching among the radiation of early foraminiferal lineages. Three of these groups also include sequences originated from previous freshwater surveys, suggesting that there were up to four independent colonization events of terrestrial and/or freshwater ecosystems by ancestral foraminifera. As shown by our data, foraminifera are a widespread and diverse component of soil microbial communities. Yet, identification of terrestrial foraminiferal species and understanding of their ecological role represent an exciting challenge for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号