首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dodson  H.C. 《Brain Cell Biology》1997,26(8):541-556
Loss of cochlear hair cells results in a loss of ganglion cells and further neurodegenerative changes throughout the auditory pathway. Understanding more about the early stages of ganglion cell loss in vivo may lead to ways of ameliorating or preventing the loss of these neurons. To examine these stages, the effects of intracochlear perfusion with aminoglycoside antibiotics on the organ of Corti and spiral ganglion cells were evaluated in young adult guinea pigs at survival periods ranging from 1 hour to 12 weeks, using immunocytochemical and ultrastructural techniques. At 1 hour survival a base-to-apex gradient of damage was indicated in the cochlea by the appearance of severely damaged hair cells and injured ganglion cells in the basal coil while in the apical coil, hair cells were damaged but intact and ganglion cells appeared normal. By 4 hours the appearance of severely disrupted hair cells and damaged ganglion cells had extended throughout the cochlea. The ultrastructural appearance of many injured ganglion cells demonstrated features characteristic of cell death including condensed cytoplasm, non-marginal clumping of nuclear chromatin, and wrinkled nuclear membrane. Despite the loss of many ganglion cells, a population of these cells remained at 12 weeks survival. These contained large amounts of rough endoplasmic reticulum, were unmyelinated apart from the central process and were surrounded by satellite cells. These features are typical of ganglion cells during development, before the onset of hearing. Immunolabelling of cochlear whole mounts after hair cell destruction with protein gene product 9.5 (PGP 9.5) revealed the presence of neural elements in the organ of Corti at up to 12 weeks survival. These may associated with the remaining ganglion cells. In these surviving ganglion cells, the intense labelling with PGP 9.5 together with the increase in rough endoplasmic reticulum, indicates the presence of active protein synthesis which may be connected with their survival.  相似文献   

2.
Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time‐lapse video microscopy, two‐photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time‐lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self‐repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non‐proliferative recovery. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 81–92, 2002; DOI 10.1002/neu.10002  相似文献   

3.
Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time-lapse video microscopy, two-photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time-lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self-repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non-proliferative recovery.  相似文献   

4.
Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.  相似文献   

5.
Asynchronous or synchronous G1 cells were heated initially and then heated or irradiated a second time when the multiplicity of viable cells in microcolonies that developed from cells surviving the first heat dose had increased to 6-30. The survival of these microcolonies was compared with the survival of single cells that were heated or irradiated after the microcolonies had been trypsinized and dispersed into single cells. The survival of the single cells was similar to the survival of the microcolonies and much higher than single cell survival calculated by correcting microcolony survival for multiplicity. However, when microcolonies developed from control unheated cells, the observed single cell survival corresponded to single cell survival calculated by correcting microcolony survival for multiplicity. Therefore, multiplicity corrections, which assume that cells within a microcolony survive independently from one another, are not valid when the microcolony has developed from a cell surviving an initial heat treatment.  相似文献   

6.
To determine mechanisms of structural plasticity in adult CNS neurons, we investigated the expression of immediate early genes (IEGs) in the rat retina. Gene products of different IEG families (JUN and FOS proteins) and cAMP-responsive element binding protein (CREBP) were examined by immunohistochemistry under three different paradigms. Normal rats which were not axotomized were compared with axotomized animals, where retinal ganglion cells (RGCs) were axotomized by intraorbital optic nerve cut and retrogradely labeled with fluorogold (FG). Under these circumstances, RGCs show only transient sprouting, followed by continuous retrograde RGC degeneration. In the third group, after the optic nerve lesion, adult rats additionally received a sciatic nerve graft to the transected optic nerve stump. This allows some RGCs to regenerate an axon into the grafted nerve. In both groups, the time course of RGC survival and JUN, CREB, and FOS protein expression was monitored. In normal animals, JUN-Immunoreactivity (JUN-Ir) was not detectable in the retinal ganglion cell layer. JUN-Ir was induced in about 70% of all FG-positive RGCs 5 days after axotomy. The expression of JUN-Ir started to decline 8 days after axotomy. Only a few JUN-Ir-positive RGCs were found after 2 weeks. In transplanted animals, however, the numbers of JUN-Ir-positive RGCs were significantly higher 2 and 3 weeks after transplantation compared to animals that exclusively received axotomy. Furthermore, in grafted rats about 70% of the regenerating RGCs expressed JUN-Ir 2 weeks after grafting as compared to only 38% JUN-positive RGCs among the surviving but not regenerating RGCs. In normal animals CREBP-Ir was constitutively expressed in nearly all cells of the retinal ganglion cell layer. The decline in number of CREBP-Ir-positive cells paralleled the axotmy-induced RGC death. FOS-Ir-positive cells were not found in the ganglion cell layer at any time. These results demonstrate a selective and transient JUN expression of RGCs after axotomy which is sustained during axonal regeneration. This suggests that sciatic nerve grafts are able to regulate the expression of JUN proteins in axotomized RGCs of adult rats. 1994 John Wiley & Sons, Inc.  相似文献   

7.
Laser beam ablation of spiral ganglion neurons was performed in seven organotypic cultures of the newborn mouse cochlea between 5 and 8 days in vitro, with a recovery period of from 18 hours to 3 days. Direct somatic injury (laser or mechanical) inflicted on hair cells does not necessarily cause their death; many of them survive, repair damage and re-establish their neurosensory connections. By contrast, laser irradiation and ablation of their afferent spiral ganglion neurons causes a most spectacular degeneration of sensory cells within 18–48 hours after the insult. Ultrastructurally, the degenerated hair cells—characteristically the inner hair cells—display “dark-cell vacuolar degeneration” that combines the signs of apoptotic death (the peripheral condensation of nuclear chromatin and nuclear pyknosis) with signs of cell edema, vacuolization and necrosis. The ultimate condensation of the cytoplasm gives the dead cells a jet black appearance. The irradiated spiral ganglion neurons die displaying similar pathological characteristics. The extent and locus of inner hair cell degeneration correspond to that of ablated spiral ganglion neurons: ultimately the ablation of one neuron causes degeneration of a single inner hair cell within the closest radial segment of the afferent innervation. The elimination of spiral ganglion neurons by mechanical means does not affect hair cell survival. It is inferred that the laser pulse acts as a stimulus depolarizing the neuronal membrane of the spiral ganglion neurons and their radial fibers and causing the excitotoxic death of their synaptic sensory cells through excessive stimulation of the glutamatergic receptors. Reciprocal pre-and postsynaptic synapses between the afferent dendrites and inner hair cells in culture could possibly serve as entryways of the stimulus. The pathogenesis of this apparent transsynaptically-induced apoptotic death of inner hair cells will be further examined in culture.  相似文献   

8.
The inner ear spiral ganglion is populated by bipolar neurons connecting the peripheral sensory receptors, the hair cells, with central neurons in auditory brain stem nuclei. Hearing impairment is often a consequence of hair cell death, e.g., from acoustic trauma. When deprived of their peripheral targets, the spiral ganglion neurons (SGNs) progressively degenerate. For effective clinical treatment using cochlear prostheses, it is essential to maintain the SGN population. To investigate their survival dependence, synaptogenesis, and regenerative capacity, adult mouse SGNs were separated from hair cells and studied in vitro in the presence of various neurotrophins and growth factors. Coadministration of fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) provided support for long-term survival, while FGF-2 alone could strongly promote neurite regeneration. Fibroblast growth factor receptor FGFR-3-IIIc was found to upregulate and translocate to the nucleus in surviving SGNs. Surviving SGNs formed contacts with other SGNs after they were deprived of the signals from the hair cells. In coculture experiments, neurites extending from SGNs projected toward hair cells. Interestingly, adult mouse spiral ganglion cells could carry out both symmetric and asymmetric cell division and give rise to new neurons. The authors propose that a combination of FGF-2 and GDNF could be an efficient route for clinical intervention of secondary degeneration of SGNs. The authors also demonstrate that the adult mammalian inner ear retains progenitor cells, which could commit neurogenesis.  相似文献   

9.
Although hookworms are known to stimulate inflammatory responses in the intestinal mucosa of their hosts, there is little quantitative data on this aspect of infection. Here we report the results of experiments conducted in hamsters infected with Ancylostoma ceylanicum. Infection resulted in a marked increase in goblet cells in the intestinal mucosa, which was dependent on the number of adult worms present and was sustained as long as worms persisted (over 63 days) but returned to baseline levels within 7 days of the removal of worms by treatment with ivermectin. Increased mast cell responses were also recorded. Levels were again dependent on the intensity of worm burdens and lasted as long as 63 days after infection. When worms were eliminated, mast cell numbers took over 2 weeks to return to normal. Paneth cell numbers fell soon after infection, the degree of reduction being dependent on the worm burden. After clearance of worms, Paneth cell numbers returned to normal within a week, but then rebounded and numbers rose to higher levels than those in control na?ve animals. The time course of the response was similar whether animals experienced a chronic low-intensity infection without loss of worms or a higher intensity infection during the course of which worm burdens were gradually reduced. Clearly, A. ceylanicum was able to induce a marked inflammatory response in its host's intestine which was sustained for over 9 weeks after infection, and which hamsters appeared able to tolerate well. Our data draw attention to the resilience of hookworms which, unlike many other nematodes, are able to survive for many weeks in a highly inflamed intestinal tract.  相似文献   

10.
Glutamate induces apoptosis in cultured spiral ganglion explants   总被引:1,自引:0,他引:1  
Traumatic sound exposure, aminoglycoside antibiotics, cochlea ischemia or traumatic stress leads to an excessive release of glutamate from inner hair cells into the synaptic cleft. The high glutamate concentration can cause a swelling and destruction of the dendrites of spiral ganglion neurons of type I as well as a reduction in the number of neurons. This may be a cause of hearing loss. The mechanism causing the reduction of neurons is still not known. Apoptosis, also called programmed cell death, could be involved. In this study, cultured spiral ganglion explants were incubated with glutamate in high concentrations. Neurite outgrowth was determined and additionally a new method was established for studying the morphology of single spiral ganglion neurons. For the first time it was shown that glutamate induces apoptosis of spiral ganglion neurons, which could be blocked selectively by a caspase-3 inhibitor. This could offer a new therapeutic strategy for hearing disorders.  相似文献   

11.
Hearing loss can be caused by primary degeneration of spiral ganglion neurons or by secondary degeneration of these neurons after hair cell loss. The replacement of auditory neurons would be an important step in any attempt to restore auditory function in patients with damaged inner ear neurons or hair cells. Application of beta-bungarotoxin, a toxin derived from snake venom, to an explant of the cochlea eradicates spiral ganglion neurons while sparing the other cochlear cell types. The toxin was found to bind to the neurons and to cause apoptotic cell death without affecting hair cells or other inner ear cell types as indicated by TUNEL staining, and, thus, the toxin provides a highly specific means of deafferentation of hair cells. We therefore used the denervated organ of Corti for the study of neuronal regeneration and synaptogenesis with hair cells and found that spiral ganglion neurons obtained from the cochlea of an untreated newborn mouse reinnervated hair cells in the toxin-treated organ of Corti and expressed synaptic vesicle markers at points of contact with hair cells. These findings suggest that it may be possible to replace degenerated neurons by grafting new cells into the organ of Corti.  相似文献   

12.
Given the evidence that basic fibroblast growth factor (FGF-2) can protect neural and retinal cells from degeneration, we evaluated the potential of this growth factor to protect sensory cells in the inner ear. When sensory cells of the organ of Corti are exposed to aminoglycoside antibiotics such as neomycin either in vivo or in vitro, significant ototoxicity is observed. The in vitro cytotoxic effects of neomycin are dose and time dependent. In neonatal rat organ of Corti cultures, complete inner and outer hair cell destruction is observed at high (mM) concentrations of neomycin while inner hair cell survival and severely damaged outer hair cells are noted at moderate (μM) concentrations, with a maximal effect observed after 2 days of culture. Approximately 50% of cochlear outer hair cells are lost at a dose of 35 μM neomycin, and most surviving cells show disorganized stereocilia. Inner hair cells show primarily disorganization of their stereocilia. A significant protective effect is observed when the organ of Corti is pre-treated with FGF-2 (500 ng/ml) for 48 hours, and then FGF-2 is included with neomycin in the culture medium. A greater extent of outer hair cell survival and a significant decrease in stereociliary damage are noted with FGF-2. However, disorganization of inner hair cell stereocilia is unaffected by FGF-2. The protective effect of FGF-2 is specific, since interleukin-1B, nerve growth factor, tumor necrosis factor, and epidermal growth factor are ineffective, while retinoic acid and transforming growth factor alpha show only a moderate protective effect. These results confirm the potential of molecules like FGF-2 for preventing cell death due to a variety of causes. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
Homozygous deafwaddler mice (dfw/dfw) have a mutation in the gene encoding plasma membrane Ca2+ATPase isoform 2 (Pmca2). They walk with a hesitant and wobbly gait, display head bobbing and are deaf. Light microscopy and transmission electron microscopy were used to evaluate the nature and relationship of morphological changes in the cochlea, spiral ganglion cells and spherical cells of the cochlear nucleus in homozygous and heterozygous mice of different ages and controls. Ultrastructural findings showed that in 7 week old homozygous (dfw) mice, inner hair cells and their afferent terminals were present although outer hair cells appeared apoptotic. Stereocilia were absent from the second and third rows of outer hair cells. Ganglion cells were also present although abnormal in appearance. In older homozygous mutants there was a loss of hair cells and spiral ganglion cells. Remaining ganglion cells in this group contained very few cytoplasmic organelles apart from a few hypertrophied mitochondria. In the anteroventral cochlear nucleus, spherical cell soma size was smaller in all homozygous (dfw) mutants than in heterozygous mice and controls. The ultrastructural appearance of the end bulbs of Held in homozygous mutants was abnormal compared with controls, and in the younger group were seen to be swollen, with less distinct synaptic densities and containing large numbers of small synaptic vesicles arranged in clumps. In the older group these synapses were distorted and contained hypertrophied mitochondria and no synaptic densities could be seen, suggesting that these synapses may be non-functional. This study has shown that in homozygous (dfw) mice structural abnormalities occurred not only in cochlear hair cells but also in the spiral ganglion neurones and spherical cells in the cochlear nucleus. It seems likely that these changes are the result of the Pmca2 mutation and the subsequent accumulation of toxic levels of calcium that may lead to alterations in their functional integrity.  相似文献   

15.
Mice that lack caspase-3, which functions in apoptosis, were generated by gene targeting and shown to undergo hearing loss. The ABR threshold of the caspase-3(-/-) mice was significantly elevated compared to that of caspase-3(+/+) mice at 15 days of age and was progressively elevated further by 30 days. Distortion product otoacoustic emissions were not detectable in caspase-3(-/-) mice at 15 days of age. Caspase-3(-/-) mice exhibited marked degeneration of spiral ganglion neurons and a loss of inner and outer hair cells in the cochlea at 30 days of age, although no such changes were apparent at 15 days. The degenerating neurons manifested features, including cytoplasmic vacuolization, distinct from those characteristic of apoptosis. Spiral ganglion neurons and cochlear hair cells thus appear to require caspase-3 for survival but not for initial development. The mapping of both the human caspase-3 gene and the locus responsible for an autosomal dominant, nonsyndromic form of hearing loss (DFNA24) to chromosome 4q35 suggests that the caspase-3(-/-) mice may represent a model of this human condition.  相似文献   

16.
IntroductionIn neoadjuvant therapy, irradiation has a deleterious effect on neoangiogenesis. The aim of this study was to examine the post-implantation effects of neoadjuvant irradiation on the survival and proliferation of autologous cells seeded onto an acellular human dermis (hAD; Epiflex). Additionally, we examined the influence of dermal hair follicle pores on viability and proliferation. We used dorsal skinfold chambers implanted in rats and in-situ microscopy to quantify cell numbers over 9 days.Methods24 rats received a skinfold chamber and were divided into 2 main groups; irradiated and unirradiated. In the irradiated groups 20Gy were applied epicutaneously at the dorsum. Epiflex pieces were cut to size 5x5mm such that each piece had either one or more visible hair follicle pores, or no such visible pores. Fibroblasts were transduced lentiviral with a fluorescent protein for cell tracking. Matrices were seeded statically with 2.5x104 fluorescent fibroblasts and implanted into the chambers. In each of the two main groups, half of the rats received Epiflex with hair follicle pores and half received Epiflex without pores. Scaffolds were examined in-situ at 0, 3, 6 and 9 days after transplantation. Visible cells on the surface were quantified using ImageJ.ResultsIn all groups cell numbers were decreased on day 3. A treatment-dependent increase in cell numbers was observed at subsequent time points. Irradiation had an adverse effect on cell survival and proliferation. The number of cells detected in both irradiated and non-irradiated subjects was increased in those subjects that received transplants with hair follicle pores.DiscussionThis in-vivo study confirms that radiation negatively affects the survival and proliferation of fibroblasts seeded onto a human dermis transplant. The presence of hair follicle pores in the dermis transplants is shown to have a positive effect on cell survival and proliferation even in irradiated subjects.  相似文献   

17.
The age-dependent, ultraviolet light (UVL) (254 nm)-induced division delay of surviving and nonsurviving Chinese hamster cells was studied. The response was examined after UVL exposures adjusted to yield approximately the same survival levels at different stages of the cell cycle, 60% or 30% survival. Cells irradiated in the middle of S suffered the longest division delay, and cells exposed in mitosis or in G1 had about the same smaller delay in division. Cells irradiated in G2, however, were not delayed at either survival level. It was further established, after exposures that yielded about 30% survivors at various stages of the cycle, that surviving cells had shorter delays than nonsurvivors. This difference was not observed for cells in G2 at the time of exposure; i.e., neither surviving nor nonsurviving G2 cells were delayed in division. The examination of mitotic index vs. time revealed that most cells reach mitosis, but all of the increase in the number of cells in the population can be accounted for by the increase of the viable cell fraction. These observations suggest strongly that nonsurviving cells, although present during most of the experiment, are stopped at mitosis and do not divide. Cells in mitosis at the time of irradiation complete their division, and in the same length of time as unirradiated controls. Division and mitotic delays after UVL are relatively much larger than after X-ray doses that reduce survival to about the same level.  相似文献   

18.
Progeny from the Harwell N-ethyl-N-nitrosourea (ENU) recessive mutagenesis screen were assessed for auditory defects. A pedigree was identified with multiple progeny lacking response to a clickbox test. Auditory brainstem response (ABR) analysis showed that homozygous mutant mice were profoundly deaf and the line was named melody. We subsequently mapped this mutation to a 6-Mb region on chromosome 8 and identified a point mutation in melody that results in a C163S substitution in the catalytic site of Caspase 3, a cysteine protease involved in apoptosis. Melody fails to complement a null Caspase-3 mutant. Scanning electron microscopy (SEM) has revealed disorganised sensory hair cells and hair cell loss. Histological analysis of melody has shown degeneration of spiral ganglion cells in homozygote mice, with a gradient of severity from apical to basal turns. Melody heterozygotes also show evidence of loss of spiral ganglion neurons, suggesting that the C163S mutation may show dominant negative effects by binding and sequestering proteins at the active site. The melody line provides a new model for studying the role of Caspase 3 in deafness and a number of other pathways and systems.  相似文献   

19.
20.
W. H. Parry 《Oecologia》1979,41(2):235-244
Summary In North East Scotland small numbers of all developmental stages of the green spruce aphid survived on Sitka spruce needles during the summer months despite the nutritional inadequacy of these needles for aphid survival following population collapse in early summer. The surviving adults lost weight and fat reserves in response to time and contained low numbers of embryos. No metabolic acclimatization of the respiration rate occurred in response to exposure to different temperatures. Aphid respiration rates during summer were significantly higher than those in winter. Therefore, it was concluded that no summer aestivation occurred. Summer survival was dependent on the ability of a few aphids of all instars to survive on the nutritionally inadequate host, these aphids possibly possessing higher than normal fat reserves or feeding on marginally nutritionally superior trees or shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号