首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyapatite, like other calcium-containing crystals previously studied by us, is mitogenic for cultured human fibroblasts. This mitogenic effect is not a result of increased ambient calcium concentration due to extracellular crystal dissolution. Synthetic crystals labelled uniformly with calcium 45 (45Ca) undergo endocytosis when incubated with cells and are solubilized. Such solubilization is inhibited by chloroquine or ammonium chloride in concentrations that significantly block the mitogenic effect of crystals but not that of serum. The data suggest that mitogenesis and intracellular crystal dissolution are related phenomena.  相似文献   

2.
Recently we found that an intracellular event related to phosphatidylinositol 4,5-bisphosphate (PIP2) is crucial for platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblastic cells (Matuoka, K., et al.: Science 239:640-643, 1988). In the present study we examined the mitogenic effects of PIP2 and its hydrolysis products introduced into the cytoplasm of BALB 3T3 cells by micro-injection to confirm the role of PIP2 hydrolysis in PDGF stimulation of cell proliferation. Injection of 1,2-dioleylglycerol (diolein) into serum-deprived quiescent cells induced DNA synthesis with the same time course as that induced by exposure of the cells to PDGF and, in the presence of PDGF, caused no additional increase in the cell population entering S phase. The injection of PIP2, inositol 1,4,5-trisphosphate, or 1,2-dioleylphosphatidic acid into the cells did not induce mitogenesis. Consistent results were obtained in experiments in which the cells were exposed to 1-oleyl-2-acetylglycerol (OAG) and ionomycin; namely, OAG stimulated proliferation of BALB 3T3 cells, but ionomycin did not induce any mitogenesis. Desensitization of the protein kinase C pathway by prolonged exposure of the cells to phorbol ester abolished the induction of cell proliferation by subsequent injection of diolein or exposure to phorbol ester or OAG as well as by PDGF challenge. These findings strongly suggest that activation of the protein kinase C system following formation of diacylglycerol by PIP2 hydrolysis is mainly responsible for the mitogenic action of PDGF on BALB 3T3 cells.  相似文献   

3.
The role of ionized calcium in the early phases of activation of human peripheral blood lymphocytes was evaluated by stimulating the cells with a calcium ionophore A23187 (Lilly) or with mitogenic lections over a broad range of extracellular calcium concentrations (< 1 to > 1000 μM). A number of biochemical parameters shown previously to be altered during stimulation of these cells by mitogenic lectins were studied including: 1) amino acid transport, 2) phosphatidylinositol turnover, 3) cyclic nucleotide accumulation, and 4) calcium uptake. The ionophore (0.1–0.5 μg/ml) was shown to produce stimulatory effects in all of these systems with the changes closely simulating those produced by the lectins themselves both in regard to time course and magnitude. A23187 also produced 5–10 fold increases in DNA synthesis as measured at 48–72 hr after exposure of the cells to this agent. The responses to A23187 were shown to be almost completely dependent on the presence of ionized calcium. Since mitogenic lectins are known to stimulate calcium uptake and DNA synthesis appears to require extracellular calcium, the early responses to A23187 suggested that calcium was important both during the early and later phases of lymphocyte activation. However, short time course studies of amino acid transport, cyclic AMP accumulation, and phosphatidylinositol turnover in calcium deficient media failed to provide convincing evidence of calcium dependency in lectin stimulation since the three responses were well preserved (<25% inhibition) in “calcium free” medium containing 1–3 mM ethylene bis (ethylene oxynitrilo) tetraacetic acid (EGTA) (an estimated final Ca2+ concentration of <1 μM). Greater than 50% inhibition of the lectin response was seen only when the cells were incubated in calcium free, EGTA-containing medium for 30 min prior to stimulation with lectin. Thus despite the striking ability of A23187 complexed with calcium to mimic the action of mitogenic lectins, its effects may involve more than simple transport of calcium into the cell. A23187 may also exert a direct membrane action as suggested by its ability to produce rapid increases in cAMP and the occurrence of cytotoxicity at 5–10 fold higher concentrations (2–4 μg/ml). However, these data do not entirely exclude a mechanism of ionophore action whereby: 1) mobilization of intracellular stores of calcium and 2) diminished intracellular transport of ionized calcium at extracellular concentrations less than or equal to 1 μM combine to provide an effective stimulus for cellular activation.  相似文献   

4.
Neuropeptide Y (NPY), a sympathetic cotransmitter, acts via G protein-coupled receptors to stimulate constriction and vascular smooth muscle cell (VSMC) proliferation through interactions with its Y1 receptors. However, VSMC proliferation appears bimodal, with high- and low-affinity peaks differentially blocked by antagonists of both Y1 and Y5 receptors. Here, we sought to determine the signaling mechanisms of NPY-mediated bimodal mitogenesis. In rat aortic VSMCs, NPY's mitogenic effect at all concentrations was blocked by pertussis toxin and was associated with decreased forskolin-stimulated cAMP levels. NPY also increased intracellular calcium levels; in contrast to mitogenesis, this effect was dose dependent. The rise in intracellular Ca2+ depended on extracellular Ca2+ and was mediated via activation of Y1 receptors, but not Y5 receptors. Despite differences in calcium, the signaling pathways activated at low and high NPY concentrations were similar. The mitogenic effect of the peptide at all doses was completely blocked by inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), protein kinase C (PKC), and mitogen-activated protein kinase kinase, MEK1/2. Thus, in VSMCs, NPY-mediated mitogenesis signals primarily via Y1 receptors activating 2 Ca2+-dependent, growth-promoting pathways -- PKC and CaMKII. At the high-affinity peak, these 2 pathways are amplified by Y5 receptor-mediated, calcium-independent inhibition of the adenylyl cyclase - protein kinase A (PKA) pathway. All 3 mechanisms converge to the extracellular signal-regulated kinases (ERK1/2) signaling cascade and lead to VSMC proliferation.  相似文献   

5.
alpha-Thrombin, a G-protein-coupled receptor agonist, is mitogenic for neonatal vascular smooth muscle (VSM) cells, but it also causes secretion of the tyrosine kinase-coupled receptor agonist platelet-derived growth factor (PDGF). In order to determine the role of growth factors with tyrosine kinase-coupled receptors in thrombin's mitogenic signal transduction cascade, the synergistic effect of basic fibroblast growth factor (bFGF) in this system was examined. While bFGF itself is a growth factor for VSM cells, it causes a 1.7-fold synergistic effect when added together with thrombin. Herbimycin A, a specific tyrosine kinase inhibitor, both decreases thrombin-induced mitogenesis by greater than 90% and abolishes tyrosine phosphorylation of phospholipase C (PLC)-gamma-1. The magnitude and time course of the increase in intracellular free calcium concentration in response to thrombin is comparable in both the presence and absence of herbimycin A. These results provide evidence that herbimycin A specifically inhibits PLC-gamma-1 tyrosine phosphorylation without affecting VSM cell viability or calcium release. Furthermore, tyrosine phosphorylation is a necessary step in thrombin's mitogenic signal transduction cascade, but it is not essential for thrombin-induced release of calcium from intracellular stores. These data suggest that a tyrosine kinase, possibly supplied by the bFGF receptor, plays an essential role in thrombin-induced mitogenesis.  相似文献   

6.
Elevated calcium and magnesium concentrations promoted mitotic activity in rat thymic lymphocyte cultures. Oestradiol inhibited calcium- but not magnesium-induced mitogenesis. One prerequisite for the mitogenic action of calcium is a raised intracellular concentration of cyclic adenosine 3′5′ monophosphate (cyclic AMP) but cyclic AMP-induced mitogenesis was insensitive to oestradiol. This suggests that the steroid blocks the mitogenic process at a stage preceding the endogenous cyclic AMP elevation. Furthermore the mitogenic actions of adrenaline, which stimulates adenylate cyclase (the enzyme responsible for cyclic AMP biosynthesis), and caffeine, which inhibits phosphodiesterase (the enzyme which degrades cyclic AMP) were also insensitive to oestradiol inhibition. This precludes a direct effect of the steroid on these enzymes. However, oestradiol did inhibit the mitogenic action of parathyroid hormone (PTH). Since the mitogenic action of PTH probably involves increased calcium entry to the cell, oestradiol may block this ion influx. The inhibition of calcium- and PTH-induced mitogenesis must be attributable to some structurally specific action of oestradiol. The steroids cholesterol, progesterone and testosterone all failed to reduce calcium-induced mitogenesis, whereas both α and β oestradiol were effective. In addition to its insensitivity to oestradiol inhibition, magnesium-stimulated mitosis was unaffected by both imidazole and calcitonin at concentrations which significantly reduced calcium-stimulated proliferation. These findings are compatible with the thesis that magnesium-induced mitogenesis does not involve the elevation of cyclic AMP concentrations.  相似文献   

7.
In previous studies we have demonstrated that 50 Hz, 100 μT magnetic field (MF) exposure of female Sprague-Dawley rats for 13 weeks significantly enhances the development and growth of mammary tumors in a breast cancer model. The present study was designed to test the hypothesis that, at least in part, the tumor (co)promoting effect of MF exposure is due to MF effects on the immune surveillance system, which is of critical importance in protecting an organism against the development and growth of tumors. For this purpose, female Sprague-Dawley rats of the same age as in the mammary tumor experiments were continuously exposed for different periods (2, 4, 8, and 13 weeks) to a 50 Hz, 100 μT MF. Control groups were sham-exposed simultaneously. Following the different exposure periods, splenic lymphocytes were cultured and the proliferative responses to the T-cell-selective mitogen concanavalin A (Con A) and the B-cell-selective pokeweed mitogen (PWM) were determined. Furthermore, the production of interleukin-1 (IL-1) was determined in the splenocyte cultures. The mitogenic responsiveness of T cells was markedly enhanced after 2 weeks of MF exposure, suggesting a co-mitogenic action of MF. A significant, but less marked increase in T-cell mitogenesis was seen after 4 weeks of MF exposure, whereas no difference from sham controls was determined after 8 weeks, indicating adaptation or tolerance to this effect of MF exposure. Following 13 weeks of MF exposure, a significant decrease in the mitogenic responsiveness of lymphocytes to Con A was obtained. This triphasic alteration in T-cell function (i.e., activation, tolerance, and suppression) during prolonged MF exposure resembles alterations observed during chronic administration of mild stressors, substantiating the hypothesis that cells respond to MF in the same way as they do to other environmental stresses. In contrast to T cells, the mitogenic responsiveness of B cells and IL-1 production of PWM-stimulated cells were not altered during MF exposure. The data demonstrate that MF in vivo exposure of female rats induces complex effects on the mitogenic responsiveness of T cells, which may lead to impaired immune surveillance after long-term exposure. Bioelectromagnetics 19:259–270, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
We have previously shown that alpha-thrombin exerted a mitogenic effect on human glomerular epithelial cells and stimulated the synthesis of urokinase-type (u-PA) and tissue-type plasminogen activator (t-PA) and of their inhibitor, plasminogen activator inhibitor 1 (PAI-1). In the present study, we investigate the signal transduction mechanisms of thrombin in these cultured cells. Thrombin induced an increase in intracellular free calcium concentrations ([Ca2+]i) in a dose-dependent manner, a plateau being reached at 1 U/ml thrombin. A 60% inhibition of this effect was produced by 300 nM nicardipine, a dihydroperidine agent, or by 4 mM EGTA, indicating that increase in [Ca2+]i was due in part to extracellular Ca2+ entry through L-type voltage-sensitive calcium channels. Thrombin also induced an increase in inositol trisphosphate (IP3), suggesting that phospholipase C activation and phosphatidylinositides breakdown were stimulated. Interestingly thrombin-stimulated cell proliferation measured by 3H thymidine incorporation was inhibited by 300 nM nicardipine, and restored by addition of 10(-8) M ionomycin, indicating that calcium entry was critical for the mitogenic signal of thrombin. Conversely, nicardipine did not modify thrombin-stimulated synthesis of u-PA, t-PA, and PAI-1. Both thrombin-stimulated cell proliferation and protein synthesis required protein kinase C activation since these effects were blocked by 10 microM H7, an inhibitor of protein kinases, and by desensitization of protein kinase C by phorbol ester pretreatment of the cells. Interestingly, DFP-inactivated thrombin which binds the thrombin receptor and gamma-thrombin, which has some enzymatic activity but does not bind to thrombin receptor, had no effect when used alone. Simultaneous addition of these two thrombin derivatives had no effect on [Ca2+]i, and 3H thymidine incorporation but stimulated u-PA, t-PA, and PAI-1 synthesis although to a lesser extent than alpha-thrombin. This effect also required protein kinase C activation to occur, presumably by a pathway distinct from phosphoinositoside turnover since it was not associated with IP3 generation. In conclusion, multiple signalling pathways can be activated by alpha-thrombin in glomerular epithelial cells: 1) Ca2+ influx through a dihydroperidine-sensitive calcium channel, which seems critical for mitogenesis; 2) protein kinase C activation by phosphoinositide breakdown, which stimulates both mitogenesis and synthesis of u-PA, t-PA, and PAI-1; 3) protein kinase C activation by other phospholipid breakdown can stimulate u-PA, t-PA, and PAI-1 synthesis but not mitogenesis.  相似文献   

9.
In lymphocytes cap formation induced by concanavalin A (con A) was found to be concentration dependent on the mitogen in the presence of colchicine, a microtubule disrupting agent. The dose-respone of cap formation under these conditions was similar to mitogen dose-response. In addition, a direct correlation was found between con A capping induced in the presence of colchicine and mitogenic responses with con A alone. Agents such as dibutyryl cyclic AMP, which suppress mitogenic responses, decrease capping. Zinc increases capping when it causes enhancement of mitogenesis and decreases capping when it suppresses mitogenic response. These observations are interpreted on the basis of a model in which binding of con A to surface receptors leads to formation of microfilaments, which might be essential for capping as well as the initiation of DNA synthesis. Thus, the experimental observations in this report lend support to a model implicating the formation of microfilaments as a crucial event in triggering a variety of cellular responses following ligand binding.  相似文献   

10.
We aimed to find out how the exposure of isolated lymphocytes to a pulsed magnetic field (MF) affected their in vitro proliferative response to mitogenic stimulation. Cells were exposed to MF of various intensities (0.3, 0.6, and 1.2 T) at a constant frequency of 30 Hz, for a period of 60, 180, and 330 s. Then, the proliferative response of splenocytes was induced by optimal concentrations of concanavalin A (Con A; mitogenic toward T cells), bacterial lipopolysaccharide (LPS; mitogenic toward B cells), or pokeweed mitogen (PWM; mitogenic toward both populations). We found that the exposure of lymphocytes to the MF profoundly inhibited their proliferative response to mitogens. The suppressive action of the MF on B and T cell proliferation was intensified when a cooperative response of those two lymphocyte populations was simultaneously induced by PWM. The inhibitory effect of MF depended on the exposure time and MF intensity. Prolonged exposure and/or a stronger intensity of the MF weakened its inhibitory influence on the response of lymphocyte to mitogenic stimulation. The data show that an exposure to MF may influence the activity of lymphocytes in their response to mitogenic stimuli.  相似文献   

11.
Three aspects of the calcium hypothesis we have proposed previously [Metcalfe, Pozzan, Smith & Hesketh (1980) Biochem. Soc. Symp. 45, 1-26] for the control of mitogenic stimulation of lymphocytes are examined in studies on the mitogenic action of the Ca2+ ionophore A23187 and its effect on cap formation. (1) Pig lymphocytes that were mitogenically stimulated by continuous incubation with 3H-labelled A23187 for 48 h contained between 3 and 15 amol of ionophore per cell. Lymphocytes exposed to 3H-labelled A23187 for 2h before washing the cells and resuspending them in ionophore-free medium were only stimulated mitogenically at 48h if the residual ionophore associated with the cells after washing was in the concentration range 3-15 amol per cell. When the cells were washed repeatedly after 2h incubation with ionophore to reduce the cell-associated ionophore below the critical concentration range, no mitogenic stimulation occurred as a result of short-term exposure to any ionophore concentration. Re-addition of ionophore to within the indicated range of cell-associated concentrations restored mitogenic stimulation at 48h. We conclude that large, short-term Ca2+ fluxes into the cells induced by the ionophore cannot generate a mitogenic signal that commits the cells to enter the cell cycle. (2) Further experiments with the ionophore showed that detectable mitogenic stimulation at 48h required a minimum of 3h exposure to optimal ionophore concentrations, and that maximal stimulation required at least 20h exposure. This is consistent with the view that a prolonged increase in the free cytoplasmic calcium concentration is required to stimulate the maximum proportion of the cells into the cell cycle. (3) Mouse splenic lymphocytes treated for short periods with very high ionophore concentrations (30 microM) in the presence of various external Ca2+ concentrations showed significant inhibition of cap formation of surface immunoglobulin receptors in the range 1-10 microM-Ca2+ in normal or depolarizing medium. We conclude that mitogens at optimal concentrations for the stimulation of lymphocytes do not cause any early increase in the free cytoplasmic Ca2+ concentration above 10 microM.  相似文献   

12.
The mitogenic effect of extracellular ATP on porcine aortic smooth muscle cells (SMC) was examined. Stimulation of [3H]thymidine incorporation by ATP was dose-dependent; the maximal effect was obtained at 100 microM. ATP acted synergistically with insulin, IGF-1, EGF, PDGF, and various other mitogens. Incorporation of [3H]thymidine was correlated with the fraction of [3H]thymidine-labeled nuclei and changes in cell counts. The stimulation of proliferation was also determined by measurement of cellular DNA using bisbenzamide and by following the increase of mitochondrial dehydrogenase protein. The effect of ATP was not due to hydrolysis to adenosine, which shows synergism with ATP. ATP acted as a competence factor. The mitogenic effect of ATP, but not adenosine, was further increased by lysophosphatidate, phosphatidic acid, or norepinephrine. The inhibitor of adenosine deaminase, EHNA, stimulated the effect of adenosine but not ATP. The adenosine receptor antagonist theophylline depressed adenosine-induced mitogenesis. ADP and the non-hydrolyzable analogue adenosine 5'-[beta, gamma-imido]triphosphate (AMP-PNP) were equally mitogenic. Thus extracellular ATP stimulated mitogenesis of SMC via P2Y purinoceptors. The mechanism of ATP acting as a mitogen in SMC was further explored. Extracellular ATP stimulated the release of [3H]arachidonic acid (AA) and prostaglandin E2 (PGE2) into the medium, and enhanced cAMP accumulation in a dose-dependent fashion similar to ATP-induced [3H]thymidine incorporation. Inhibitors of the arachidonic acid metabolism pathway, quinacrine and indomethacin, partially inhibited the mitogenic effect of ATP but not of adenosine. Pertussis toxin inhibited ATP-stimulated DNA synthesis, AA release, PGE2 formation, and cAMP accumulation. Down-regulation of protein kinase C (PKC) by long-term exposure to phorbol dibutyrate (PDBu) partially prevented stimulation of DNA synthesis and activation of the AA pathway by ATP. The PKC inhibitor, staurosporine, antagonized mitogenesis stimulated by ATP. No synergistic effect was found when PDBu and ATP were added together. Therefore, a dual mechanism, including both arachidonic acid metabolism and PKC, is involved in ATP-mediated mitogenesis in SMC. In addition, ATP acted synergistically with angiotensin II, phospholipase C, serotonin, or carbachol to stimulate DNA synthesis. Finally, the possible physiological significance of ATP as a mitogen in SMC was further studied. The effect of endothelin and heparin, which are released from endothelial cells, on ATP-dependent mitogenesis was investigated. Extracellular ATP acted synergistically with endothelin to stimulate a greater extent of [3H]thymidine incorporation than was seen with PDGF plus endothelin. Heparin, believed to have a regulatory role, partially inhibited the stimulation of DNA synthesis caused both by ATP and PDGF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We have previously reported that rats which have been suffering from streptozotocin-diabetes for 4 weeks show a supranormal mast cell mediated mitogenesis in mesenteric windows and in the skin; this late emerging, augmented mitogenic responsiveness appears, to be unaffected by insulin per se. To test whether this increased proliferogenic response is effected by some acquired quality within the tissue rather than a systemic factor in the blood, we studied mast cell mediated mitogenesis in organ-cultured intact mesenteric windows from rats with diabetes of 4 weeks' duration, using a biochemically-defined serum-free growth medium. Mast cells were activated by Compound 48/80 and their secretion was quantified biochemically in terms of histamine release. The mast cell-dependent mitogenic reaction in the predominant, morphologically discrete fibroblasts and mesothelial cells was quantified photometrically using Feulgen-absorption analysis of individual cell nuclei, and by determination of the mitotic index. Both types of target cell responded to a significantly greater degree mitogenically in diabetic compared with control tissue. This finding suggests that a considerable part of the increased mitogenic responsiveness previously observed in diabetic animals in vivo is causally related to some tissue-bound, i.e., cellular and/or extracellular factor(s) acquired during the course of the disease.  相似文献   

14.
Cellular signal transduction pathways transduce input signals to produce corresponding output effects, ensuring correct response to extracellular signals. Manipulation of components in signaling pathways will alter correlation of input signals to output effects. Here we report that by reconstructing the components in mitogenic and apoptotic signaling pathways, Ras, Raf, and caspase-3, we manipulated the cells to couple mitogenic signal input to apoptotic output. The reconstructed biomolecules that couple mitogenesis to apoptosis are designated as “mitogenesis coupled-apoptosis molecular device” (MCAMD). As mitogenesis in cancer cells is constitutively active, MCAMD may have potential applications for cancer gene therapy.  相似文献   

15.
The phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and the calcium ionophore, A23187, have similar effects on many different cells. For example, both show mitogenic and comitogenic activities for lymphocytes. It had been suggested that some of TPA's effects are due to its ability to act as a calcium ionophore. In order to test this idea, we compared the ability of TPA and ionophore to synergize with concanavalin A (Con A) in a two-phase system of lymphocyte mitogenesis. We found that ionophore was most comitogenic with Con A when present in the early phase of stimulation. TPA was only comitogenic when present in the late phase. Ionophore and TPA could not replace one another in the system. However, both ionophore and TPA together could replace Con A and stimulate DNA synthesis when they were presented to the cells in the sequential order of ionophore followed by TPA. Both compounds required the presence of external calcium to be effective.  相似文献   

16.
The fibroblast growth factor-1 (FGF-1) mitogenic signal transduction pathway is not well characterized, and evidence indicates that FGF-1 binding to and activation of cell-surface receptors is not solely sufficient for a full mitogenic response. Although initiation of the phosphorylation signaling cascades are likely important in FGF-1-induced mitogenic signaling, there appear to be additional signaling requirements. In this study, we demonstrate that FGF-1 internalization and subsequent processing correlates with the mitogenic potential of the growth factor on NIH 3T3 cells. Using site-directed mutants of FGF-1 and inhibitors of the endocytic and degradative pathways, we provide evidence for growth factor internalization and exposure to an acidic environment as necessary components of FGF-1-induced mitogenesis. In addition, a protease-sensitive event(s) appears critical for a complete mitogenic response to FGF-1, whereas, this protease sensitivity was not detected under the same conditions for serum-stimulated mitogenesis. Therefore, proteolytic modification of internalized FGF-1 may result in the activation of additional, intracellular signaling events.  相似文献   

17.
P P Lin  G M Hahn 《Radiation research》1988,113(3):501-512
Chinese hamster ovary HA-1 cells were tested for their ability to respond to mitogenic stimulation after hyperthermia at 45 degrees C. Cells were arrested by 24 h incubation in serum-free Eagle's MEM. Heating of arrested cells in serum-free medium did not alter heat sensitivity compared to exponentially growing cells heated in serum-containing medium. After hyperthermia cells exhibited a delay in the ability to undergo mitogenesis. Recovery of the capacity for mitogenesis occurred during the 24 h following heating and was able to take place in the absence of serum. After recovery in serum-free medium, cells were simultaneously assayed for survival and mitogenesis as measured by [3H]Thy uptake. With increasing heating time, surviving fraction and mitogenesis decreased. The reduction in survival was similar to the reduction in [3H]Thy incorporation. The relationship between mitogenesis and cell death was studied in more detail with flow cytometry. At a relatively mild heat dose of 30 min at 45 degrees C (survival = 30%), a small population of cells (9%) was found to be clonogenically dead yet capable of being stimulated to progress from G1 to G2-M. At a more severe heat dose of 40 min at 45 degrees C (survival = 3%), stimulation of dead cells could not be detected. Therefore, hyperthermia impairs mitogenic ability, but at low heat doses, a subpopulation of killed cells can still be stimulated to progress through the cell cycle.  相似文献   

18.
Lysophosphatidic acid (LPA) is an extracellular signaling mediator with a broad range of cellular responses. Three G-protein-coupled receptors (Edg-2, -4, and -7) have been identified as receptors for LPA. In this study, the ectophosphatase lipid phosphate phosphatase 1 (LPP1) has been shown to down-regulate LPA-mediated mitogenesis. Furthermore, using degradation-resistant phosphonate analogs of LPA and stereoselective agonists of the Edg receptors we have demonstrated that the mitogenic and platelet aggregation responses to LPA are independent of Edg-2, -4, and -7. Specifically, we found that LPA degradation is insufficient to account for the decrease in LPA potency in mitogenic assays, and the stereoselectivity observed at the Edg receptors is not reflected in mitogenesis. Additionally, RH7777 cells, which are devoid of Edg-2, -4, and -7 receptor mRNA, have a mitogenic response to LPA and LPA analogs. Finally, we have determined that the ligand selectivity of the platelet aggregation response is consistent with that of mitogenesis, but not with Edg-2, -4, and -7.  相似文献   

19.
Mitogenic activity of edible mushroom lectins   总被引:6,自引:0,他引:6  
A special group of lectins were isolated from three popular Asian edible mushrooms: Volvariella volvacea, Pleurotus flabellatus and Hericium erinacium, and their mitogenic activities towards mouse T cells were compared to the extensively investigated Agaricus bisporus lectin (ABL) and the Jack bean lectin, Concanavalin A (Con A). Among the four mushroom lectins tested, V. volvacea lectin (VVL) exhibited strong mitogenic activity as demonstrated by 3H-thymidine incorporation, which was at least 10-fold more effective than that of Con A, and the other mushroom lectins did not exhibit any proliferative activity. Treatment with VVL and ABL resulted in activation of the protein tyrosine kinase, p56lck, and expression of early activation markers, CD69 and CD25, but only VVL induced intracellular calcium influx while ABL triggered cell death. The calcium influx was sensitive to calcium channel antagonists such as nifedipine and verapamil. The P. flabellatus lectin (PFL) and H. erinacium lectin (HEL) did not stimulate p56lck expression and cell proliferation. Neither of these lectins interfered with Con A-mediated lymphocyte proliferation, which further indicated that both PFL and HEL were non-mitogenic. Taken all results together, VVL induced mitogenesis through T cell receptors and the subsequent calcium signaling pathway.  相似文献   

20.
Activation of mouse lymphocytes by vesicular stomatitis virus.   总被引:8,自引:3,他引:5       下载免费PDF全文
Vesicular stomatitis virus (VSV) is a mitogen for mouse spleen cells, and infectious virus is not required for mitogenesis. At concentrations between 10 and 100 microgram per culture, VSV stimulated DNA synthesis and blast transformation. Maximal activation by VSV occurred 48 h after culture initiation. Spleen cells depleted of T-lymphocytes by treatment with anti-Thy 1.2 and complement and those obtained from congenitally athymic BALB/c nu/nu mice were activated by VSV, suggesting that VSV is a B-cell mitogen. Activation of spleen cells was independent of the host in which the virus was grown, since VSV grown in BHK-21, HKCC, or MDBK cells was mitogenic. The mitogenesis was specific for VSV, since MDBK cell-grown WSN influenza virus was not a mitogen in this in vitro activation system, VSV-specific antibody prevented VSV mitogenesis, and VSV was mitogenic for spleen cells from C3H/HeJ mice which were resistant to mitogenesis by endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号