首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High precision ultrasonic and densimetric techniques have been used to study the interaction of Ni2+ ions with right-handed poly[d(G-C)]·poly[d(G-C)], poly-[d(A-C)]·poly[d(G-T)] and poly[d(A-T)]·poly[d(A-T)] in 5 mM CsCl, 0.2 mM HEPES, pH 7.5 at 20°C. From these measurements the changes in the apparent molar volume and the apparent molar adiabatic compressibility due to the interaction have been obtained. The volume effects of the binding, calculated per mole of Ni2+ ions, range from 11.7 to 23.9 cm3 mol–1 and the compressibility effects range from 19.3 × 10–4 to 43.1 × 10–4 cm3 mol–1 bar–1. These data are interpreted in terms of dehydration of the polynucleotides and Ni2+ ions, i.e. the release of water molecules from the hydration shells of the molecules. An increase in G+C content gives an increase in volume and compressibility effects, indicating a rise in the extent of dehydration. The dehydration effects of Ni2+ binding to poly[d(G-C)]·poly[d(G-C)] are approximately twice those of poly[d(A-T)]·poly[d(A-T)]. The volume and compressibility effects of Ni2+–EDTA complex formation have also been measured and used as a model system for quantitative estimation. These values revealed that Ni2+ ions can coordinate two atomic groups of poly[d(G-C)]·poly[d(G-C)], while in the case of the Ni2+–poly[d(A-T)]·poly[d(A-T)] complex volume and compressibility effects correspond to one direct or two indirect (through water) contacts.  相似文献   

2.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

3.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Low plasma levels of carotenoids and tocopherols are associated with increased risk of chronic disease and disability. Because dietary intake of these lipid-soluble antioxidant vitamins is only poorly correlated with plasma levels, we hypothesized that circulating carotenoids (vitamin A-related compounds) and tocopherols (vitamin E-related compounds) are affected by common genetic variation. By conducting a genome-wide association study in a sample of Italians (n = 1190), we identified novel common variants associated with circulating carotenoid levels and known lipid variants associated with α-tocopherol levels. Effects were replicated in the Women's Health and Aging Study (n = 615) and in the α-Tocopherol, β-Carotene Cancer Prevention (ATBC) study (n = 2136). In meta-analyses including all three studies, the G allele at rs6564851, near the β-carotene 15,15′-monooxygenase 1 (BCMO1) gene, was associated with higher β-carotene (p = 1.6 × 10−24) and α-carotene (p = 0.0001) levels and lower lycopene (0.003), zeaxanthin (p = 1.3 × 10−5), and lutein (p = 7.3 × 10−15) levels, with effect sizes ranging from 0.10–0.28 SDs per allele. Interestingly, this genetic variant had no significant effect on plasma retinol (p > 0.05). The SNP rs12272004, in linkage disequilibrium with the S19W variant in the APOA5 gene, was associated with α-tocopherol (meta-analysis p = 7.8 × 10−10) levels, and this association was substantially weaker when we adjusted for triglyceride levels (p = 0.002). Our findings might shed light on the controversial relationship between lipid-soluble anti-oxidant nutrients and human health.  相似文献   

5.
An investigation of the terminal anaerobic processes occurring in polluted intertidal sediments indicated that terminal carbon flow was mainly mediated by sulfate-reducing organisms in sediments with high sulfate concentrations (>10 mM in the interstitial water) exposed to low loadings of nutrient (equivalent to <102 kg of N · day−1) and biochemical oxygen demand (<0.7 × 103 kg · day−1) in effluents from different pollution sources. However, in sediments exposed to high loadings of nutrient (>102 kg of N · day−1) and biochemical oxygen demand (>0.7 × 103 kg · day−1), methanogenesis was the major process in the mediation of terminal carbon flow, and sulfate concentrations were low (≤2 mM). The respiratory index [14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism, a measure of terminal carbon flow, was ≥0.96 for sediment with high sulfate, but in sediments with sulfate as little as 10 μM in the interstitial water, respiratory index values of ≤0.22 were obtained. In the latter sediment, methane production rates as high as 3 μmol · g−1 (dry weight) · h−1 were obtained, and there was a potential for active sulfate reduction.  相似文献   

6.
Analysis of stable isotope composition is an important tool in research on plant physiological ecology. However, large‐scale patterns of leaf‐stable isotopes for aquatic macrophytes have received considerably less attention. In this study, we examined the spatial pattern of stable isotopes of carbon (δ13C) and nitrogen (δ15N) of macrophytes leaves collected across the arid zone of northwestern China (approximately 2.4 × 106 km2) and attempted to illustrate its relationship with environmental factors (i.e., temperature, precipitation, potential evapotranspiration, sediment total carbon and nitrogen). Our results showed that the mean values of the leaf δ13C and δ15N in the macrophytes sampled from the arid zone were −24.49‰ and 6.82‰, respectively, which were far less depleted than those measured of terrestrial plants. The order of averaged leaf δ13C from different life forms was as follows: submerged > floating‐leaved > emergent. Additionally, our studies indicated that the values of foliar δ13C values of all the aquatic macrophytes were only negatively associated with precipitation, but the foliar δ15N values were mainly associated with temperature, precipitation, and potential evapotranspiration. Therefore, we speculated that water‐relation factors are the leaf δ13C determinant of macrophytes in the arid zone of northwestern China, and the main factors affecting leaf δ15N values are the complex combination of water and energy factors.  相似文献   

7.
1. A method in use for the extraction of urinary steroid conjugates has been applied to study the recovery of synthetic steroid monoglucuronides from aqueous solution. 2. In the presence of dissolved ammonium sulphate (50g./100ml.), ether–ethanol (3:1, v/v, 3×0·5vol.) extracted the monoglucuronides of steroids of the C18, C19 and C21 series, quantitatively at values pH2–9. 3. The hydrolysis of the synthetic steroid monoglucuronides by β-glucuronidase (Patella vulgata) has been examined with reference to the pH value of the medium, enzyme concentration and substrate concentration. 4. The rate of hydrolysis of steroid monoglucuronides was dependent upon steroid structure and upon site of conjugation. 5. The rate of hydrolysis of the monoglucuronides decreased in the order C-3 (phenolic) >C-3β>C-17β>C-3α.  相似文献   

8.
We examined rates of N2 fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El Niño (2010) and La Niña (2011). Replicated vertical profiles performed under oxygen-free conditions show that N2 fixation takes place both in euphotic and aphotic waters, with rates reaching 155 to 509 µmol N m−2 d−1 in 2010 and 24±14 to 118±87 µmol N m−2 d−1 in 2011. In the aphotic layers, volumetric N2 fixation rates were relatively low (<1.00 nmol N L−1 d−1), but when integrated over the whole aphotic layer, they accounted for 87–90% of total rates (euphotic+aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of α-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria and Clostridium spp., Vibrio spp.). Organic and inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N2 fixation in the core of the OMZ at all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of these substrates from upper layers are hypothesized to explain the observed variability of N2 fixation in the ETSP.  相似文献   

9.
Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg2+ and during helix-coil transitions of DNA by temperature (Tm) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×103 M−1, DNA-theobromine = 1.1×103 M−1, and DNA-Caffeine = 3.8×103 M−1. On the other hand Tm/pH melting profiles showed 24–35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg2+. The spectral analyses indicated the order of binding affinity as “caffeine≥theophylline>theobromine” to the native double helical DNA, and “theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.  相似文献   

10.
Total DNA concentration in 0.2-μm-pore-size Nuclepore filter filtrates (<0.2-μm fraction) of Tokyo Bay water was estimated to be 9 to 19 ng/ml by an immunochemical quantification method. Almost 90% of the DNA in the <0.2-μm fraction was found in the size fractions larger than 3.0 × 105 Da and 0.03 μm, and most was not susceptible to DNase digestion, that is, consisted of non-DNase-digestible DNA (coated DNA). A significant amount of DNA was obtained from the <0.2-μm fraction of the seawater by three different methods: polyethylene glycol precipitation, direct ethanol precipitation, and ultrafilter concentration. Gel electrophoresis analysis of the isolated DNAs showed that they consisted mainly of coated DNAs with a similar molecular sizes (20 to 30 kb [1.3 × 107 to 2.0 × 107 Da). The abundance of the ultramicron virus-sized coated DNA in natural seawater suggests that these DNA-rich particles can be attributed to marine DNA virus assemblages and that they may be a significant phosphorus reservoir in the environment.  相似文献   

11.
We have determined the crystal structure of the RNA octamer duplex r(guguuuac)/r(guaggcac) with a tandem wobble pair, G·G/U·U (motif III), to compare it with U·G/G·U (motif I) and G·U/U·G (motif II) and to better understand their relative stabilities. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 41.92 Å, c = 56.41 Å, and γ = 120°, with one duplex in the asymmetric unit. The structure was solved by the molecular replacement method at 1.9 Å resolution and refined to a final R factor of 19.9% and Rfree of 23.3% for 2862 reflections in the resolution range 10.0–1.9 Å with F ≥ 2σ(F). The final model contains 335 atoms for the RNA duplex and 30 water molecules. The A-RNA stacks in the familiar head-to-tail fashion forming a pseudo-continuous helix. The uridine bases of the tandem U·G pairs have slipped towards the minor groove relative to the guanine bases and the uridine O2 atoms form bifurcated hydrogen bonds with the N1 and N2 of guanines. The N2 of guanine and O2 of uridine do not bridge the ‘locked’ water molecule in the minor groove, as in motifs I and II, but are bridged by water molecules in the major groove. A comparison of base stacking stabilities of motif III with motifs I and II confirms the result of thermodynamic studies, motif I > motif III > motif II.  相似文献   

12.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

13.
We studied the interaction between a synthetic peptide (sequence Ac-GXGGFGGXGGFXGGXGG-NH2, where X = arginine, Nω,Nω-dimethylarginine, DMA, or lysine) corresponding to residues 676–692 of human nucleolin and several DNA and RNA substrates using double filter binding, melting curve analysis and circular dichroism spectroscopy. We found that despite the reduced capability of DMA in forming hydrogen bonds, Nω,Nω-dimethylation does not affect the strength of the binding to nucleic acids nor does it have any effect on stabilization of a double-stranded DNA substrate. However, circular dichroism studies show that unmethylated peptide can perturb the helical structure, especially in RNA, to a much larger extent than the DMA peptide.  相似文献   

14.
This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs) transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA), F-actin and fibronectin], immune reaction (CD11b and F4/80), keratocyte apoptosis (TUNEL), calcification (alizarin red, vonKossa and osteocalcin), and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF) and in vitro experiments were used to characterize the molecular mechanism mediating BMP7’s anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×104 gene copies/ug DNA). Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p<0.05) in Fantes grading scale. Immunostaining and immunoblot analyses detected significantly reduced levels of αSMA (46±5% p<0.001) and fibronectin proteins (48±5% p<0.01). TUNEL, CD11b, and F4/80 assays revealed that BMP7 gene therapy is nonimmunogenic and nontoxic for the cornea. Furthermore, alizarin red, vonKossa and osteocalcin analyses revealed that localized PEI2-GNP-mediated BMP7 gene transfer in rabbit cornea does not cause calcification or osteoblast recruitment. Immunofluorescence of BMP7-transefected HCFs showed significantly increased pSmad-1/5/8 nuclear localization (>88%; p<0.0001), and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001) and Smad6 (53%, p<0.001), and decreased αSMA (78%; p<0.001) protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.  相似文献   

15.
Objectives:The purpose of the present study was to compare the fatigue-induced changes in performance fatigability, bilateral deficit, and patterns of responses for the electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF), during unilateral and bilateral maximal, fatiguing leg extensions.Methods:Nine men (Mean±SD; age =21.9±2.4 yrs; height =181.8±11.9 cm; body mass =85.8±6.2 kg) volunteered to perform 50 consecutive maximal, bilateral (BL), unilateral dominant (DL), and unilateral non-dominant (NL) isokinetic leg extensions at 180°·s-1, on 3 separate days. Electromyographic and MMG signals from both vastus lateralis (VL) muscles were recorded. Repeated measures ANOVAs were utilized to examine mean differences in normalized force, EMG AMP, EMG MPF, MMG AMP, MMG MPF and the bilateral deficit.Results:The results demonstrated a Condition × Repetition interaction for normalized force (p=0.004, η2p=0.222) and EMG MPF (p=0.034, η2p=0.214) and main effects for Repetition for EMG AMP (p=0.019, η2p=0.231), MMG AMP (p<0.001, η2p=0.8550), MMG MPF (p=0.009, η2p=0.252), and the bilateral deficit (p<0.001, η2p=0.366).Conclusions:The findings demonstrated less performance fatigability during the BL than the unilateral tasks, likely due to a reduced relative intensity via interhemispheric inhibition that attenuated the development of excitation-contraction coupling failure during the BL task.  相似文献   

16.

Introduction

Abdominal pain in PNH has never been investigated by in-vivo imaging studies. With MRI, we aimed to assess mesenteric vessels flow and small bowel wall perfusion to investigate the ischemic origin of abdominal pain.

Materials and Methods

Six PNH patients with (AP) and six without (NOP) abdominal pain underwent MRI. In a blinded fashion, mean flow (MF, quantity of blood moving through a vessel within a second, in mL·s-1) and stroke volume (SV, volume of blood pumped out at each heart contraction, in mL) of Superior Mesenteric Vein (SMV) and Artery (SMA), areas under the curve at 60 (AUC60) and 90 seconds (AUC90) and Ktrans were assessed by two operators.

Results

Mean total perfusion and flow parameters were lower in AP than in NOP group. AUC60: 84.81 ± 11.75 vs. 131.73 ± 18.89 (P < 0.001); AUC90: 102.33 ± 14.16 vs. 152.58 ± 22.70 (P < 0.001); Ktrans: 0.0346 min-1 ± 0.0019 vs. 0.0521 ± 0.0015 (P = 0.093 duodenum, 0.009 jejunum/ileum). SMV: MF 4.67 ml/s ± 0.85 vs. 8.32 ± 2.14 (P = 0.002); SV 3.85 ml ± 0.76 vs. 6.55 ± 1.57 (P = 0.02). SMA: MF 6.95 ± 2.61 vs. 11.2 ± 2.32 (P = 0.07); SV 6.52 ± 2.19 vs. 8.78 ± 1.63 (P = 0.07). We found a significant correlation between MF and SV of SMV and AUC60 (MF:ρ = 0.88, P < 0.001; SV: ρ = 0.644, P = 0.024), AUC90 (MF: ρ = 0.874, P < 0.001; SV:ρ = 0.774, P = 0.003) and Ktrans (MF:ρ = 0.734, P = 0.007; SV:ρ = 0.581, P = 0.047).

Conclusions

Perfusion and flow MRI findings suggest that the impairment of small bowel blood supply is significantly associated with abdominal pain in PNH.  相似文献   

17.
High thermostability is required for alkaline α-amylases to maintain high catalytic activity under the harsh conditions used in textile production. In this study, we attempted to improve the thermostability of an alkaline α-amylase from Alkalimonas amylolytica through in silico rational design and systems engineering of disulfide bridges in the catalytic domain. Specifically, 7 residue pairs (P35-G426, Q107-G167, G116-Q120, A147-W160, G233-V265, A332-G370, and R436-M480) were chosen as engineering targets for disulfide bridge formation, and the respective residues were replaced with cysteines. Three single disulfide bridge mutants—P35C-G426C, G116C-Q120C, and R436C-M480C—of the 7 showed significantly enhanced thermostability. Combinational mutations were subsequently assessed, and the triple mutant P35C-G426C/G116C-Q120C/R436C-M480C showed a 6-fold increase in half-life at 60°C and a 5.2°C increase in melting temperature compared with the wild-type enzyme. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50°C to 55°C, the optimum pH shifted from 9.5 to 10.0, the stable pH range extended from 7.0 to 11.0 to 6.0 to 12.0, and the catalytic efficiency (kcat/Km) increased from 1.8 × 104 to 2.4 × 104 liters/g · min. The possible mechanism responsible for these improvements was explored through comparative analysis of the model structures of wild-type and mutant enzymes. The disulfide bridge engineering strategy used in this work may be applied to improve the thermostability of other industrial enzymes.  相似文献   

18.
Ceramide glucoside (1-O-glucosido-2-N-acyl-sphingosine) was hydrolysed to ceramide (N-acyl-sphingosine) and glucose by β-glucosidase from ox brain. The reaction was stimulated by the non-ionic detergent, Triton X-100, or by the anionic detergents, cholate or taurocholate. It was not reversible, had optimum pH5·0 (with acetate buffer) or 5·6 (with pyridine buffer), had Km 1·8×10−4m and was inhibited by δ-gluconolactone and sphingosine, but not by ceramide or palmitic acid.  相似文献   

19.
The interaction of hexamminecobalt(III), Co(NH3)63+, with 160 and 3000–8000 bp length calf thymus DNA has been investigated by circular dichroism, acoustic and densimetric techniques. The acoustic titration curves of 160 bp DNA revealed three stages of interaction: (i) Co(NH3)63+ binding up to the molar ratio [Co(NH3)63+]/[P] = 0.25, prior to DNA condensation; (ii) a condensation process between [Co(NH3)63+]/[P] = 0.25 and 0.30; and (iii) precipitation after [Co(NH3)63+]/[P] = 0.3. In the case of 3000–8000 bp DNA only two processes were observed: (i) binding up to [Co(NH3)63+]/[P] = 0.3; and (ii) precipitation after this point. In agreement with earlier observations, long DNA aggregates without changes in its B-form circular dichroism spectrum, while short DNA demonstrates a positive B→Ψ transition after [Co(NH3)63+]/[P] = 0.25. From ultrasonic and densimetric measurements the effects of Co(NH3)63+ binding on volume and compressibility have been obtained. The binding of Co(NH3)63+ to both short and long DNA is characterized by similar changes in volume and compressibility calculated per mole Co(NH3)63+: ΔV = 9 cm3 mol–1 and Δκ = 33 × 10–4 cm3 mol–1 bar–1. The positive sign of the parameters indicates dehydration, i.e. water release from Co(NH3)63+ and the atomic groups of DNA. This extent of water displacement would be consistent with the formation of two direct, hydrogen bonded contacts between the cation and the phosphates of DNA.  相似文献   

20.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号