首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

2.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

3.
Some experimental methodologies require the quantification of protein in the presence of polymers like poly(ethylene glycol) (PEG) and dextran (DEX). In the aqueous two-phase system (ATPS) extraction of biomolecules, the interference of these phase-forming polymers on the Bradford quantification assay is commonly recognized. However, how these polymers interfere has not been reported hitherto. In this study we show that while dextran concentrations of 20% (w/w) can be used without error, loss of accuracy occurs for solutions with PEG concentrations >10% (w/w). Above this value a substantial decrease on the assay sensitivity is observed.  相似文献   

4.
采用考马斯亮蓝G250染色法测得室温下BSA在PEG/dextran双水相体系中的分配系数。以BSA在PEG/dextran体系的下相富集为目标,研究了PEG的分子量、浓度、dextran浓度以及所加入中性盐的种类与浓度、体系pH诸因素对其分配特性的影响。实验结果表明,在PEG4000/dextran体系中,采用PEG质量分数9%-dextran质量分数9%的浓度组成,同时在pH=7.0,NaC l浓度为0.2 mol.L-1或pH6.0,NaC l浓度为0.34 mol.L-1的工艺条件下萃取BSA均可达最小分配系数,其值为0.014。  相似文献   

5.
Use of the thermodynamic principles of aqueous two-phase extraction (ATPE) to drive protein into a crosslinked gel is developed as a protein isolation and separation technique, and as a protein loading technique for drug delivery applications. A PEG/dextran gel system was chosen as a model system because PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex(R)) are common chromatographic media. The effects of polymer concentrations and molecular weights, salts, and pH on the partitioning of ovalbumin matched ATPE heuristics and data trends. Gel partition coefficients (Cgel/Csolution) increased with increasing PEG molecular weight and concentration and decreasing dextran concentration (increased gel swelling). The addition of PEG to the buffer solution yielded partition coefficients more than an order of magnitude greater than those obtained in systems with buffer alone, or added salt. A combined salt/PEG system yielded an additional order of magnitude increase. For example, when ovalbumin solution (2.3 mg/mL) was equilibrated with Sephadex(R) G-50 at pH 6.75, the partition coefficients were 0.13 in buffer, 0.11 in buffer with 0.22M KI, 2.3 in 12 wt% PEG-10,000 and 32.0 in 12 wt% PEG-10, 000 with 0.22M KI. The effect of anions and cations as well as ionic strength and pH on the partitioning of ovalbumin also matched ATPE heuristics. Using the heuristics established above, partition coefficients as high as 80 for bovine serum albumin and protein recoveries over 90% were achieved. In addition, the wide range of partition coefficients that were obtained for different proteins suggests the potential of the technique for separating proteins. Also, ovalbumin sorption capacities in dextran were as high as 450 mg/g dry polymer, and the sorption isotherms were linear over a broad protein concentration range.  相似文献   

6.
The partitioning of alpha-lactalbumin and beta-lactoglobulin from bovine whey has been studied in an aqueous poly(ethylene glycol) (PEG)-hydroxypropylstarch two-phase system. The influence of several parameters including concentrations of polymers, sodium phosphate buffer, KSCN, and of PEG palmitate, with and without the presence of Ca2+, on the partitioning of the proteins has been investigated. The separation of the two proteins was demonstrated by counter-current distribution. A purification procedure for both proteins has been developed by using PEG-hydroxypropylstarch two-phase system. This system is compared with the more costly standard system based on PEG and dextran. The possible use of the aqueous two-phase systems for batch extraction for large scale purification of these whey proteins is discussed.  相似文献   

7.
During recombinant Escherichia coli fermentation with high expression levels, inclusion bodies are often formed. Aqueous two-phase systems have been used in the presence of urea for the initial recovery steps. To investigate phase behavior of such systems we determined phase diagrams of poly(ethylene glycol) (PEG)/sodium sulfate/urea/water and PEG/dextran T-500 (DEX)/urea/phosphate buffer/water at different concentrations of urea and different molecular weight of PEG. PEG/Na2SO4 aqueous two-phase systems could be obtained including up to 30% w/w urea at 25 degrees C and PEG/dextran T-500 up to 35% w/w urea. The binodial was displaced toward higher concentrations with increasing urea concentrations. The partition coefficient of urea was near unity. An unstable mutant of T4-lysozyme with an amino acid replacement in the core (V149T) was used to analyze the effect of phase components on the conformation of the enzyme. We showed that partitioning of tryptophan was not dependent on the concentration of urea in the phase system.  相似文献   

8.
Metal ion affinity partitioning of protein in aqueous two-phase systems was studied using Sepharose as ligand carrier as an integrated adsorption partitioning. Cu(II)-bound Sepharose was mixed with protein solution and an aqueous two-phase system. The affinity sorbent was distributed quantitatively to the upper side or the interface. The binding studies of lysozyme to copper-bound gel in PEG/dextran two-phase systems demonstrate the feasibility of this bioseparation process. PEG/dextran system did not affect binding and elution of lysozyme to and from the Cu(II)-Sepharose particles.  相似文献   

9.
Two different series of hydrophobically modified proteins were partitioned in a number of aqueous two-phase systems (ATPS) to investigate the effect of hydrophobicity as a single property on partitioning. The modified proteins were derived from beta-lactoglobulin and bovine serum albumin (BSA). Measurement of the surface hydrophobicity of the proteins is important; hydrophobic interaction chromatography (HIC) was used for this purpose. The resolution of the systems (R) in terms of protein surface hydrophobicity and the intrinsic hydrophobicity (log P(0)) of the systems was established. The effect of the addition of NaCl to PEG/phosphate and PEG/dextran systems was analyzed in terms of the hydrophobicity difference between the phases and their ability to promote hydrophobic interactions between the protein surface and the PEG molecules. The values for R and log P(0) differed somewhat depending on which group of modified proteins was used for partitioning. The addition of NaCl to PEG/phosphate systems promoted an increase in the values of R, showing an important effect on the resolution of the systems for protein surface hydrophobicity (twice as high when compared with systems without NaCl). For PEG/dextran systems, the addition of 9% NaCl (w/w) promoted an improvement in the resolution toward surface hydrophobicity with an increase of 60% on the value of R. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
New aqueous-aqueous two-phase systems composed of relatively low molecular weight polymers such as polyethylene glycol (PEG) (Mr: 1000-4000) and dextran (Mr: 10,000 and 40,000) were evaluated for purification of proteins by counter-current chromatography (CCC). The compositions of aqueous two-phase systems were optimized by measuring parameters such as viscosity and volume ratio between the two phases. CCC purification of a glucosyltransferase (GTF) from Streptococcus mutans (SM) cell-lysate was successfully demonstrated with a 7.5% PEG 3350-10% dextran T40 system containing 10mM potassium phosphate buffer at pH 9.0. After CCC purification, both PEG and dextran contained in the CCC fractions were easily removed by ultrafiltration in a short period of time. The fractionated column contents containing GTF were analyzed by enzymatic activity as well as sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The recovery of the enzyme from CCC fraction was over 95% as estimated by enzymatic activities.  相似文献   

11.
In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.  相似文献   

12.
Summary Partition and production of the extracellular chitinase from Serratia marcescens were studied in PEG/dextran aqueous two-phase systems. The enzyme partitions into the bottom phase and the cells segregate into the top phase. The best system is 2% (w/v) PEG 20000 and 5% (w/v) dextran T500. The cell growth and enzyme production kinetics are similar in the aqueous two-phase system and in the polymer-free reference system. However, the maximum enzyme concentration in the former system is 1.5 times that in the latter one.  相似文献   

13.
Summary The partition behaviour of RNA extracted from yeast was examined using three types of aqueous two-phase systems: potassium phosphate—polyethyleneglycol (PEG) system, ammonium sulphate—PEG system and dextran sulphate—PEG—NaCl system. The molecular weight of PEG showed rather remarkable effects of RNA partition than did the electrolyte. High molecular weight RNA was concentrated at the interface in these systems. This suggests the possibility of its simple concentration or extraction.  相似文献   

14.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

15.
An iminodiacetic acid derivative of poly(ethylene glycol) (PEG-IDA) that chelates metal cations has been synthesized and used to extract proteins in metal affinity aqueous two-phase PEG/dextran systems. With less than 1% of the PEG substituted with chelated copper, partition coefficients are shown to increase by factors of up to 37 over extraction with unsubstituted PEG. The proteins studied are preferentially extracted into the Cu(II)PEGIDA phase in proportion to the number of accessible histidine residues on their surface. The affinity contribution to partitioning is proportional to the number of exposed histidine over a very wide range. The partition coefficients of heme-containing proteins measured in the Cu(II)PEG-IDA/dextran systems increase with the pH of the extraction mixture from pH 5.5 to pH 8.0, while partition coefficients in the unsubstituted PEG/dextran systems are very nearly independent of pH. The strong pH dependence of the metalaffinity extraction can be utilized in the recovery of the extracted protein.  相似文献   

16.
Summary The electrochemical effect of a charged dextran derivative and the hydrophobic effect of hydrophobic chain PEG derivative on partitioning of six types of proteins in PEG/dextran aqueous two-phase systems were investigated- When 1. 6%(w/w)DEAE-dextran was present in the system,the partition coefficient decreased quickly with increasing pH value;when 0. 4% (w/w)PEG pentadecanoic acid ester was present in the system, the partition coefficient of protein with strong hydrophobicity was greatly increased. The experimental results show that the influence of hydrocarbon chain PEG derivative on partition coefficient is closely related to the hydrophobicity of proteins.  相似文献   

17.
A method of enzyme release and aqueous two-phase extraction is described for the separation of penicillin acylase from Escherichia coli cells. Butyl acetate, 12% (v/v), treatment combined with freeze-thawing gives up to 70% enzyme release. For polyethylene glycol (PEG) + phosphate two-phase extraction systems the enzyme purity and yield were rather low. Modified PEG, including PEG-ampicillin, PEG-aniline, PEG-phosphate, and PEG-trimethylamine, were synthesized and used in aqueous two-phase systems; PEG-trimethylamine is the most satisfactory. A system containing 12% (w/w) PEG4000, 8% (w/w) of which is PEG-trimethylamine, with 0.7M potasium phosphate at pH 7.2, resulted in the enzyme selective partition being greatly enhanced by charge directed effects. Possible mechanisms for the separation process are discussed. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Cephalosporin C was extracted from diluted or whole broth by PEG/salt aqueous two-phase systems. Parameters such as PEG molecular weight, salt type, pH, and salt concentration were investigated for finding a suitable extraction system. In PEG 600/ammonium sulfate or phosphate systems, K(c) (partition coefficienct of cephalosporin C) was observed to be larger than 1, with K(d) (partition coefficient of desacetyl cephalosporin C) being smaller than 1. The particular values of these coefficients would imply that the difficult separation of cephalosporin C and desacetyl cephalosporin C could possibly be achieved via the aqueous two-phase extraction. The addition of surfactants, water-miscible solvents, and neutral salts for enhancement of the separation efficiency was also investigated. The addition of surfactants to the system did not affect the separation efficiency substantially. K(c) would increase whereas K(d) decreased as a result of the addition of acetone, MeOH, EtOH, IPA, and n-BuOH. Meanwhile both K(c) and K(d) would decrease whenever neutral salts, NaCl, KCl, Kl, or KSCN, were added. The partitioning behavior of cephalosporin C and desacetyl cephalosporin C in filtered, whole, and different batches of broth was notably quite similar to that of diluted broth. The recovery yield of cephalosporin C in whole broth extraction was observed to be a function of centrifugal force used in phase separation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
-Amylase production was studied in Bacillus amyloliquefaciens in aqueous two-phase systems composed of polyethyleneglycol (PEG)/dextran T500. Cells and enzyme were obtained in different phases when phase systems were applied to the growth media. Effects of different molecular weights and concentrations of polymers on differences of enzyme separation were established. The effect of PEG used in the system to the release of enzyme was investigated.  相似文献   

20.
Phase diagram data at 4 degrees C was determined for the aqueous two-phase systems composed of polyethylene glycol, dextran, and water. The Flory-Huggins theory of polymer thermodynamics was used to correlate partitioning of biomolecules in these aqueous two-phase systems resulting in a simple linear relationship between the natural logarithm of the partition coefficient and the concentration of polymers in the two phases. This relationship was verified by partitioning a series of dipeptides which differ from one another by the addition of a CH(2) group on the c-terminal amino acid residue and by utilizing a set of low-molecular-weight proteins. The slope of the line could be expressed in terms of the interactions of the biomolecule with the phase forming polymers and water. The main result for the dipeptides was that knowledge of the partition coefficient in any of the PEG/dextran/water systems, regardless of polymer molecular weight, enabled prediction of the coefficient in all of the systems. The dipeptides were also used for determination of the Gibbs free energy of transfer of a CH(2) group between the phases. This quantity was correlated with polymer concentration, thus establishing a hydrophobicity profile for the PEG/ dextran/water systems. The methodology for predicting dipeptide partition coefficients was extended to proteins, where it was found that low-molecular-weight proteins gave a linear relationship with the tie line compositions of a phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号