首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribose-binding protein (RBP) is exported to the periplasm of Escherichia coli via the general export pathway. An rbsB-lacZ gene fusion was constructed and used to select mutants defective in RBP export. The spontaneous Lac+ mutants isolated in this selection contained either single-amino-acid substitutions or a deletion of the RBP signal sequence. Intact rbsB genes containing eight different point mutations in the signal sequence were reconstructed, and the effects of the mutations on RBP export were examined. Most of the mutations caused severe defects in RBP export. In addition, different suppressor mutations in SecY/PrlA protein were analyzed for their effects on the export of RBP signal sequence mutants in the presence or absence of SecB. Several RBP signal sequence mutants were efficiently suppressed, but others were not suppressed. Export of an RBP signal sequence mutant in prlA mutant strains was partially dependent on SecB, which is in contrast to the SecB independence of wild-type RBP export. However, the kinetics of export of an RBP signal sequence mutant point to a rapid loss of pre-RBP export competence, which occurs in strains containing or lacking SecB. These results suggest that SecB does not stabilize the export-competent conformation of RBP and may affect translocation by stabilizing the binding of pre-RBP at the translocation site.  相似文献   

2.
Soluble factors participate in protein translocation across a variety of biological membranes. TheEscherichia coli soluble protein SecB (the product of thesecB gene) is involved in the export of periplasmic and outer membrane proteins. The isolation ofsecB mutations permitted the demonstration that SecB is required for rapid and efficient export of certain proteins. Consistent with the results of these genetic studies, purified SecB has been shown to stimulate protein translocation acrossE. coli inner membrane vesiclesin vitro. This article presents a review of these past studies of SecB, speculation on the role of SecB in protein translocation, and a comparison of SecB and other factors, trigger factor and GroEL.  相似文献   

3.
Evidence is presented that the E. coli secB gene encodes a soluble protein that interacts with the mature region of the precursor maltose-binding protein (MBP), and promotes MBP export by preventing premature folding of the newly synthesized polypeptide into an export-incompetent form. The interaction of SecB with MBP was indicated by the finding that synthesis of various export-defective MBP species interfered with normal protein export by limiting SecB availability. The antifolding activity of SecB was demonstrated by the following: the defect in MBP export in SecB- cells was suppressed by mutational alterations affecting MBP folding; export of a mutant MBP that is accomplished in a strictly posttranslational mode was totally blocked in SecB- cells; and the rate of folding of wild-type MBP synthesized in vitro was found to be accelerated when SecB was absent and greatly retarded when excess SecB was present.  相似文献   

4.
5.
The small subunit precursor of pea ribulose-1,5-bisphosphate carboxylase/oxygenase engineered with prokaryotic elements was expressed in Escherichia coli. This resulted in a dependable level of synthesis of the precursor protein in E. coli. The bacterially synthesised plant precursor protein was translocated from the cytoplasm and targeted to the outer membrane of the envelope zone. During the translocation step, a significant proportion of the precursor was processed to a soluble, mature SSU and found localised in the periplasm. The determined amino acid sequence of the isolated precursor showed that it had a deletion of an arginine residue at position -15 in the transit peptide. Expression of this transit peptide-appended mammalian cytochrome b(5) in E. coli displayed a targeting profile of the chromogenic chimera that was similar to that observed with the plant precursor protein.  相似文献   

6.
The Escherichia coli export chaperone SecB binds nascent precursors of certain periplasmic and outer membrane proteins and prevents them from folding or aggregating in the cytoplasm. In this study, we demonstrate that the C-terminal 13 residues of SecB were highly mobile using (1)H NMR spectroscopy. A protein lacking the C-terminal 13 amino acids of wild-type SecB was found to retain the ability to bind unfolded maltose-binding protein (MBP) in vitro but to interfere with the normal kinetics of pre-MBP export when overexpressed in vivo. The defect in export was reversed by overproduction of the peripheral membrane ATPase SecA. Therefore, deletion of the mobile region of SecB may alter the interactions of SecB with SecA.  相似文献   

7.
SecB is a cytosolic chaperone involved in protein translocation across cytoplasmic membranes in Escherichia coli. It has been shown to be required for efficient translocation of a subset of precursor proteins but is not essential for cell viability. This study investigated whether synthesis of SecB is growth rate dependent. Interestingly, the total amount of SecB synthesized in the cells was relatively small. Moreover, the levels of SecB were found to be carbon source dependent since more SecB was produced in cells grown in glycerol media than in cells grown in glucose media, regardless of the growth rate. This is in contrast to the other Sec proteins, whose synthesis is growth rate dependent and not related to glucose as a carbon source. In addition, cyclic AMP (cAMP) partially relieves the lower levels of SecB observed in glucose medium, a compensatory effect that depends on the presence of both cya and crp gene products. Thus, the glucose-dependent synthesis of SecB may be related to the cAMP-cAMP receptor protein complex-mediated activation.  相似文献   

8.
9.
The primary pathway of protein export in E. coli.   总被引:7,自引:0,他引:7  
  相似文献   

10.
J Kim  Y Lee  C Kim    C Park 《Journal of bacteriology》1992,174(16):5219-5227
Ribose-binding protein (RBP) is an exported protein of Escherichia coli that functions in the periplasm. The export of RBP involves the secretion machinery of the cell, consisting of a cytoplasmic protein, SecA, and the integral membrane translocation complex, including SecE and SecY. SecB protein, a chaperone known to mediate the export of some periplasmic and outer membrane proteins, was previously reported not to be involved in RBP translocation even though small amounts of in vitro complexes between SecB and RBP have been detected. In our investigation, it was shown that a dependence on SecB could be demonstrated under conditions in which export was compromised. Species of RBP which carry two mutations, one in the leader that blocks export and a second in the mature protein which partially suppresses the export defect, were shown to be affected by SecB for efficient translocation. Five different changes which suppress the effect of the signal sequence mutation -17LP are all located in the N domain of the tertiary structure of RBP. All species of RBP show similar interaction with SecB. Furthermore, a leaky mutation, -14AE, generated by site-specific mutagenesis causes reduced export in the absence of SecB. These results indicate that SecB can interact with RBP during secretion, although it is not absolutely required under normal circumstances.  相似文献   

11.
Signal recognition particle (SRP) and trigger factor (TF) both bind to ribosomal protein L23 at the peptide exit area on the 50S subunit of the E. coli ribosome. In this study, we have developed a spin-down assay and used it to estimate KD values and the corresponding enthalpies for the binding of radio-labelled SRP and TF to naked ribosomes and to ribosomes carrying a tetrapeptidyl-tRNA in the P site. At 20 degrees C, the KD value for TF binding is 2 microM and for SRP it is 170 nM for naked as well as for translating ribosomes. At 4 degrees C, the KD values for TF and SRP binding are 1.1 microM and 90 nM, respectively. Competition binding experiments reveal that SRP and TF bind simultaneously to the ribosome with little affinity interference, showing that the factors have separate binding sites on L23. This makes an alternating binding mode for TF and SRP less plausible.  相似文献   

12.
Trigger factor (TF) is a ribosome-associated protein that interacts with a wide variety of nascent polypeptides in Escherichia coli. Previous studies have indicated that TF cooperates with DnaK to facilitate protein folding, but the basis of this cooperation is unclear. In this study we monitored protein export in E. coli that lack or overproduce TF to obtain further insights into its function. Whereas inactivation of genes encoding most molecular chaperones (including dnaK) impairs protein export, inactivation of the TF gene accelerated protein export and suppressed the need for targeting factors to maintain the translocation competence of presecretory proteins. Furthermore, overproduction of TF (but not DnaK) markedly retarded protein export. Manipulation of TF levels produced similar effects on the export of a cytosolic enzyme fused to a signal peptide. The data strongly suggest that TF has a unique ability to sequester nascent polypeptides for a relatively prolonged period. Based on our results, we propose that TF and DnaK promote protein folding by distinct (but complementary) mechanisms.  相似文献   

13.
Decay-accelerating factor (DAF) is a glycosylphosphatidylinositol-anchored membrane protein that protects cells from damage by autologous complement activation. Of the four mAb against DAF prepared in our laboratory, 1C6 completely blocked DAF function, whereas 5B2 partially blocked it. Using these mAb, we investigated whether human monocytes were activated via DAF molecules. When monocytes were incubated with 1C6 alone, glucose was consumed in significant amounts and phagocytosis of latex beads was enhanced, indicating that the monocytes had been activated. However, 1C6 did not enhance the production of monokines, TNF-alpha, and IL-1 alpha and -beta. The F(ab')2 fragment of 1C6 also activated monocytes, whereas 5B2 and the Fab fragment of 1C6 could not. To further examine monocyte activation, these cells were treated with phosphatidylinositol-specific phospholipase C. Increased glucose consumption and enhanced phagocytic activity by 1C6 were considerably reduced in monocytes treated with phosphatidylinositol-specific phospholipase C. In addition, we found that 1C6 stimulated the generation of inositol trisphosphate. These results demonstrate that the signal transmitted via the DAF molecule is capable of stimulating monocytes.  相似文献   

14.
Less than 20% of the Escherichia coli maltose-binding protein (MBP) synthesized in Bacillus subtilis is exported. However, a portion of the secreted MBP was processed cotranslationally. Coexpression of SecB, a secretion-related chaperone of E. coli, stimulated posttranslational export of MBP in B. subtilis but inhibited its cotranslational processing. Export of a SecB-independent MBP-ribose-binding protein hybrid precursor was not enhanced by SecB. A slowly folding MBP derivative (MBP-Y283D) was more efficiently secreted than wild-type MBP, suggesting that the antifolding activity of SecB promotes posttranslational secretion of MBP in B. subtilis.  相似文献   

15.
In the accompanying paper (Altman, E., Bankaitis, V.A., and Emr, S.D. (1990) J. Biol. Chem. 265, 18148-18153) a putative SecB binding site was identified in the mature LamB protein. The export of wild-type LamB was unperturbed when this region was removed, however, suggesting the presence of a second site of interaction between SecB and LamB. In this paper we show that the interference caused by export-defective LamB proteins is influenced by the amount of signal sequence that is present. If a large portion of the signal sequence is deleted then the interference levels are significantly reduced. This result suggests that a region of the signal sequence contributes to the interaction of SecB with the LamB protein. Using anti-SecB affinity chromatography, we demonstrated directly that the association of SecB protein with precursor LamB is dependent on the presence of both the LamB signal sequence and the interfering region which maps to amino acids 320-380 of mature LamB. Although the interfering region is not necessary for the export of wild-type LamB under normal conditions, when the signal sequence is mutationally altered the interfering region is required to promote the efficient export of LamB protein. Also, deletion of the interfering region eliminates the ability of wild-type LamB precursor to be maintained in an export competent conformation in vivo. Collectively, our results indicate that efficient export of the LamB protein is achieved by an interaction with SecB that involves both the LamB signal sequence and the interfering region in mature LamB.  相似文献   

16.
Most extracytoplasmic proteins are synthesized with an N-terminal signal sequence that targets them to the export apparatus. Escherichia coli prlA mutants (altered in the secY gene) are able to export cell envelope proteins lacking any signal sequence. In order to understand how such proteins are targeted for export, we isolated mutations in a signal sequenceless version of alkaline phosphatase that block its export in a prlA mutant. The mutations introduce basic amino acyl residues near the N-terminus of alkaline phosphatase. These changes do not disrupt an N-terminal export signal in this protein since the first 25 amino acids can be removed without affecting its export competence. These findings suggest that signal sequenceless alkaline phosphatase does not contain a discrete domain that targets it for export and may be targeted simply because it remains unfolded in the cytoplasm. We propose that basic amino acids near the N-terminus of a signal sequenceless protein affect its insertion into the translocation apparatus after it has been targeted for export. These findings allow the formulation of a model for the entry of proteins into the membrane-embedded export machinery.  相似文献   

17.
The product of the secB gene is required for export of a subset of secreted proteins to the outer membrane and periplasm of Escherichia coli. Precursor maltose-binding protein (MBP) accumulates in the cytoplasm of secB-carrying mutants, but export of alkaline phosphatase is only minimally affected by secB mutations. When export of MBP-alkaline phosphatase hybrid proteins was analyzed in wild-type and secB-carrying mutant strains, the first third of mature MBP was sufficient to render export of the hybrid proteins dependent on SecB. Substitution of a signal sequence from a SecB-independent protein had no effect on SecB-dependent export. These findings show that the first third of mature MBP is capable of conferring export incompetence on an otherwise competent protein.  相似文献   

18.
E Crooke  B Guthrie  S Lecker  R Lill  W Wickner 《Cell》1988,54(7):1003-1011
We have isolated large amounts of E. coli outer-membrane protein A precursor (proOmpA). Purified proOmpA is active in membrane assembly, and this assembly is saturable with respect to the precursor protein. A proOmpA-Sepharose matrix allows affinity isolation of trigger factor, a soluble, 63,000 dalton monomeric protein that stabilizes proOmpA in assembly competent form. Comparison of trigger factor's amino-terminal sequence with those in a computer data bank and with those encoded by sec genes, as well as groEL and heat shock gene dnaK, suggests that trigger factor is encoded by a previously undescribed gene. Trigger factor and proOmpA form a 1:1 complex that can be isolated by gel filtration. Purified canine signal recognition particle (SRP) can also stabilize proOmpA for membrane insertion. This postribosomal activity of SRP suggests a unifying theme in protein translocation mechanisms.  相似文献   

19.
The prlA/secY gene, which codes for an integral membrane protein component of the Escherichia coli protein export machinery, is the locus of the strongest suppressors of signal sequence mutations. We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants. The export efficiency can be substantial; in a strain carrying the prlA4 allele, 30% of signal-sequenceless alkaline phosphatase is exported to the periplasm. Other components of the E.coli export machinery, including SecA, are required for this export. SecB is required for the export of signal-sequenceless alkaline phosphatase even though the normal export of alkaline phosphatase does not require this chaperonin. Our findings indicate that signal sequences confer speed and efficiency upon the export process, but that they are not always essential for export. Entry into the export pathway may involve components that so overlap in function that the absence of a signal sequence can be compensated for, or there may exist one or more means of entry that do not require signal sequences at all.  相似文献   

20.
A chimeric protein containing the uncleaved signal sequence of plasminogen activators inhibitor-2 (PAI2) fused to alkaline phosphatase (AP) interferes with Escherichia coli protein export and arrests growth. Suppressors of this toxicity include secG mutations that define the Thr-41-Leu-42-Phe-43 (TLF) domain of SecG. These mutations slow down the export of PAI2-AP. Another construct encoding a truncated PAI2 signal sequence (hB-AP) is also toxic. Most suppressors exert their effect on both chimeric proteins. We describe here five secG suppressors that only suppress the toxicity of hB-AP and selectively slow down its export. These mutations do not alter the TLF domain: three encode truncated SecG, whereas two introduce Arg residues in the transmembrane domains of SecG. The shortest truncated protein only contains 13 residues of SecG, suggesting that the mutation is equivalent to a null allele. Indeed, a secG disruption selectively suppresses the toxicity of hB-AP. However, the missense mutations are not null alleles. They allow SecG binding to SecYE, although with reduced affinity. Furthermore, these mutated SecG are functional, as they facilitate the export of endogenous proteins. Thus, SecG participates in signal sequence recognition, and both transmembrane domains of SecG contribute to ensure normal signal sequence recognition by the translocase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号