首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing number of fungal genomes whose sequence has been completed permits their comparison both at the nucleotide and protein levels. The information thus obtained improves our knowledge on evolutionary relationships between fungi. Comparison of the Saccharomyces cerevisiae genome with other Hemiascomycetes genomes confirms that a whole-genome duplication occurred before the diversification between Candida glabrata and the Saccharomyces sensu stricto species and after separation from the branch leading to the other Hemiascomycetes. Duplication was followed by individual gene losses and rearrangements affecting extensive DNA regions. Although S. cerevisiae and C. glabrata are two closely related yeast species at an evolutionary scale, their different habitats and life styles correlate with specific gene differences and with more extensive gene loses having occurred in the parasitic C. glabrata. At a closer evolutive scale, diversification among the sensu stricto species began with nucleotide changes at the intergenic regions affecting sequences that are not relevant for gene regulation, together with more extensive genome rearrangements involving transposons and telomeric regions. One important characteristic of fungal genomes that is shared with other eukaryotes is the fusion of gene sequences coding for separate protein modules into a single open reading frame. This allows diversification of protein functions while saving gene information.  相似文献   

2.
The structure of the first eukaryotic genome, belonging to Saccharomyces cerevisiae, has been deduced; however, very little is known about its origin. In order to trace events that led to the current state of the Saccharomyces nuclear genomes, random fragments of genomic DNA from three yeasts were sequenced and compared to the S. cerevisiae database sequence. Whereas, S. cerevisiae and Saccharomyces bayanus show perfect synteny, a significant portion of the analysed fragments from Saccharomyces servazzii and Saccharomyces kluyveri show a different arrangement of genes when compared to S. cerevisiae. When the sequenced fragments were probed to the corresponding karyotype, a group of genes present on a single chromosome of S. servazzii and S. kluyveri had homologues scattered on several S. cerevisiae chromosomes. Apparently, extensive reorganisation of the chromosomes has taken place during evolution of the Saccharomyces yeasts. In addition, while one gross duplication could have taken place, at least a few genes have been duplicated independently at different time-points in the evolution.  相似文献   

3.
The identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the 'yeast-specific' genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated 'Génolevures'.  相似文献   

4.
The region of Saccharomyces cerevisiae chromosome III centromere-distal to the PGK gene is the site of frequent chromosome polymorphisms. We have sequenced this region from fragments of chromosome III isolated from three different yeast strains, GRF88, CN31C and CF4-16B. The sequence analysis demonstrates that these polymorphisms are associated with the presence of Ty and delta elements and defines a region of the chromosome which is a hot-spot for transposition events (the RAHS). The three strains can be arranged into a logical evolutionary series in which successive transposition and recombination events insert Ty elements and fuse them with consequent deletions of chromosome and of transposon sequences. The influence of such events on yeast genome evolution is discussed.  相似文献   

5.
We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.  相似文献   

6.
7.
8.
Cai J  Zhao R  Jiang H  Wang W 《Genetics》2008,179(1):487-496
Origination of new genes is an important mechanism generating genetic novelties during the evolution of an organism. Processes of creating new genes using preexisting genes as the raw materials are well characterized, such as exon shuffling, gene duplication, retroposition, gene fusion, and fission. However, the process of how a new gene is de novo created from noncoding sequence is largely unknown. On the basis of genome comparison among yeast species, we have identified a new de novo protein-coding gene, BSC4 in Saccharomyces cerevisiae. The BSC4 gene has an open reading frame (ORF) encoding a 132-amino-acid-long peptide, while there is no homologous ORF in all the sequenced genomes of other fungal species, including its closely related species such as S. paradoxus and S. mikatae. The functional protein-coding feature of the BSC4 gene in S. cerevisiae is supported by population genetics, expression, proteomics, and synthetic lethal data. The evidence suggests that BSC4 may be involved in the DNA repair pathway during the stationary phase of S. cerevisiae and contribute to the robustness of S. cerevisiae, when shifted to a nutrient-poor environment. Because the corresponding noncoding sequences in S. paradoxus, S. mikatae, and S. bayanus also transcribe, we propose that a new de novo protein-coding gene may have evolved from a previously expressed noncoding sequence.  相似文献   

9.
Genome shrinkage occurs after whole genome duplications (WGDs) and in the evolution of parasitic or symbiotic species. The dynamics of this process, whether it occurs by single gene deletions or also by larger deletions are however unknown. In yeast, genome shrinkage has occurred after a WGD. Using a computational model of genome evolution, we show that in a random genome single gene deletions cannot explain the observed pattern of gene loss in yeast. The distribution of genes deleted per event can be very well described by a geometric distribution, with a mean of 1.1 genes per event. In terms of deletions of a stretch of base pairs, we find that a geometric distribution with an average of 500-600 base pairs per event describes the data very well. Moreover, in the model, as in the data, gene pairs that have a small intergenic distance are more likely to be both deleted. This proves that simultaneous deletion of multiple genes causes the observed pattern of gene deletions, rather than deletion of functionally clustered genes by selection. Furthermore, we found that in the bacterium Buchnera aphidicola larger deletions than in yeast are necessary to explain the clustering of deleted genes. We show that the excess clustering of deleted genes in B. aphidicola can be explained by the clustering of genes in operons. Therefore, we show that selection has little effect on the clustering of deleted genes after the WGD in yeast, while it has during genome shrinkage in B. aphidicola.  相似文献   

10.
C Yang  J F Theis  C S Newlon 《Genetics》1999,152(3):933-941
DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species.  相似文献   

11.
Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.  相似文献   

12.
Byrne KP  Wolfe KH 《Genetics》2007,175(3):1341-1350
We investigated patterns of rate asymmetry in sequence evolution among the gene pairs (ohnologs) formed by whole-genome duplication (WGD) in yeast species. By comparing three species (Saccharomyces cerevisiae, Candida glabrata, and S. castellii) that underwent WGD to a nonduplicated outgroup (Kluyveromyces lactis), and by using a synteny framework to establish orthology and paralogy relationships at each duplicated locus, we show that 56% of ohnolog pairs show significantly asymmetric protein sequence evolution. For ohnolog pairs that remain duplicated in two species there is a strong tendency for the faster-evolving copy in one species to be orthologous to the faster copy in the other species, which indicates that the evolutionary rate differences were established before speciation and hence soon after the WGD. We also present evidence that in cases where one ohnolog has been lost from the genome of a post-WGD species, the lost copy was likely to have been the faster-evolving member of the pair prior to its loss. These results suggest that a significant fraction of the retained ohnologs in yeast species underwent neofunctionalization soon after duplication.  相似文献   

13.
In this paper, we describe the movement of a genetically marked Saccharomyces cerevisiae transposon. Ty912(URA3), to new sites in the S. cerevisiae genome. Ty912 is an element present at the HIS4 locus in the his4-912 mutant. To detect movement of Ty912, this element has been genetically marked with the S. cerevisiae URA3 gene. Movement of Ty912(URA3) occurs by recombination between the marked element and homologous Ty elements elsewhere in the S. cerevisiae genome. Ty912(URA3) recombines most often with elements near the HIS4 locus on chromosome III, less often with Ty elements elsewhere on chromosome III, and least often with Ty elements on other chromosomes. These recombination events result in changes in the number of Ty elements present in the cell and in duplications and deletions of unique sequence DNA.  相似文献   

14.
The gene encoding myosin light chain kinase (MYLK) is duplicated on human chromosome 3 (HSA3; 3p13;3q21) and on a chromosome with conserved synteny to HSA3 in most non-human primate species. In human, the functional copy resides on 3q21, whereas the 3p13 site contains a pseudogene. To trace the origin of the duplication, we characterized the mouse gene Mylk. A single sequence corresponding to the functional Mylk was detected. We sequenced a 180-kb bacterial artificial chromosome clone containing the 24 first exons of Mylk; the complete mouse gene is expected to span >200 kb. Comparisons with the draft of the human genome revealed that the sequence and structure of MYLK are conserved in mammals. Fluorescence in situ hybridization (FISH) analysis indicated that the mouse gene localizes to a single site on chromosome 16B4-B5, a region with conserved synteny with HSA3q. Our study provides information on both the structure and the evolution of MYLK in mammals and suggests that it was duplicated after the divergence of rodents and primates.  相似文献   

15.
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.  相似文献   

16.
A novel chromosome engineering technology is described which enables conditional splitting of natural chromosomes in haploid cells of the yeast Saccharomyces cerevisiae. The technology consists of introduction of a recognition sequence for the homing endonuclease PI-SceI into the S. cerevisiae genome and conditional expression of the gene encoding the PI-SceI enzyme under the control of the MET3 promoter. To test the technology, we split chromosome V upstream of GLC7 by use of the autonomously replicating sequence (ARS)-added polymerase-chain-reaction-mediated chromosome-splitting (ARS-PCS) method that we recently developed. A recognition sequence for PI-SceI was subsequently introduced downstream of the GLC7 locus. Splitting was analyzed following induction of the PI-SceI-encoding gene. Approximately 50% of the clones tested had the expected minichromosome harboring only the GLC7 gene, suggesting that any desired chromosomal region may be converted into a new chromosome by use of this method. Because this technology allows initial construction of a strain harboring multiple constructs prior to subsequent induction of random chromosome loss events under specific selective conditions, we propose that this technology may be applicable to reconstructing the S. cerevisiae genome by means of combinatorial loss of minichromosomes.  相似文献   

17.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

18.
Plant genome evolution: lessons from comparative genomics at the DNA level   总被引:15,自引:0,他引:15  
Angiosperm genomes show tremendous variability in genome size and chromosome number. Nevertheless, comparative genetic mapping has revealed genome collinearity of closely related species. Sequence-based comparisons were used to assess the conservation of gene arrangements. Numerous small rearrangements, insertions/deletions, duplications, inversions and translocations have been detected. Importantly, comparative sequence analyses have unambiguously shown micro-collinearity of distantly related plant species. Duplications and subsequent gene loss have been identified as a particular important factor in the evolution of plant genomes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号