首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scale of selectivity for the binding of calcium and some heavy metal ions by citrus and sugar-beet pectins was set up by pH-measurements. The same order of selectivity was found for the two pectins, decreasing as follows: Cu2+ Pb2+ Zn2+ > Cd2+ Ni2+ ≥ Ca2+. Binding isotherms for Ca2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions have shown a greater binding level when the ionic strength decreased and when the pectin concentration increased in the presence of 0.1 M NaNO3. By comparing binding isotherms, the same order of selectivity was found as by pH-studies. Scatchard plots and Hill index evaluation showed for all ions and all pectins anticooperative interactions in water. In the presence of 0.1 M NaNO3, citrus pectins displayed cooperative interactions for all metal ions. In contrast, for sugar-beet pectins, cooperative interactions only occured with Cu2+ and Pb2+. With Ca2+, Ni2+ and Zn2+ sugar-beet pectins displayed Scatchard plots which could not be distinguished from an anticooperative binding. This difference of behaviour could be related to the presence of acetyl groups decreasing the affinity of Me2+ for sugar-beet pectins.  相似文献   

2.
Using the fluorescent Ca2+ selective chelator Quin2 to induce and measure the dissociation of Ca2+ from actin, we have recently found that actin binds Ca2+ and Mg2+ much more tightly than previously thought (Gershman, L.C., Selden, L.A., and Estes, J.E. (1986) Biochem. Biophys. Res. Commun. 135, 607-614). In this report, we show that the kinetics of dissociation of Ca2+ from Ca-actin and Mg2+ from Mg-actin closely parallel the fluorescence changes in 1,5-I-N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS)-actin, suggesting that the 1,5-I-AEDANS-actin fluorescence directly reflects slow first-order cation exchange rather than a slow Mg2+-induced isomerization as originally proposed by Frieden (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886). Measuring divalent cation exchange directly, we have determined the dissociation rate constants for Ca2+ (k-Ca) and Mg2+ (k-Mg), the equilibrium dissociation constants for Ca2+ (KCa), and the ratio of cation binding affinities, KMg/Kca, to actin over the pH range 7-8. We have found that k-Ca is 5-10 times greater than k-Mg and KMg is about 4 times greater than KCa. From the data we calculate the association rate constants for Ca2+ (kCa) and Mg2+ (kMg) to be about 7 X 10(6) M-1 s-1 and 2 X 10(5) M-1 s-1, respectively. kCa appears to be diffusion-limited, but kMg is significantly smaller due to the characteristics of the Mg2+ aquo ion. These findings are consistent with a simple first-order binding model for the tight binding of divalent cations to actin.  相似文献   

3.
Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength.  相似文献   

4.
The binding of bivalent metal ions Cu2+, Zn2+, Ca2+, Mg2+ to low-density lipoproteins (LDL) was investigated by the ESR technique. The monitoring of ESR spectra of paramagnetic Mn2+ ions in the presence of above-listed cations made it possible to evaluate the dissociation constants of their complexes with LDL. The effective dissociation constant of the complex Mn(2+)-LDL used for calculations was KD = (1.1 +/- 0.4) x 10(-4) M according to literature data. The investigated cations may be classified into two groups: 1) low dissociation constants were characteristic for Cu2+ ions [KD = (1.3 +/- 0.5) x 10(-4) M], which demonstrated a high oxidative ability, and for Zn2+ [KD = (0.95 +/- 0.45) x 10(-4) M] and Mn2+ ions, which could strongly influence the copper-induced LDL oxidation; 2) Ca2+ and Mg2+ were characterized by higher values of KD [(6 +/- 1) x 10(-4) M and (7.5 +/- 1.5) x 10(-4) M, accordingly] and slightly affected the Cu(2+)-induced oxidation of LDL. The results of the present work reinforced our earlier conjecture that cations may influence the process of lipid peroxidation, binding only to particular binding sites on the surface of LDL.  相似文献   

5.
This paper systematically investigated the interference of calcium and magnesium in protein measurement with a modified Lowry method first proposed by Frølund et al. (Appl Microbiol Biotechnol 43:755–761, 1995). This interference has in the past been largely ignored resulting in variable and unreliable results when applied to natural water matrices. We discovered significant formation of calcium and magnesium precipitates that lead to a decline in light absorbance at 750 nm during protein determination. Underestimation of protein concentration (sometimes even yielding negative concentrations) and low experiment reproducibility were demonstrated at high concentrations of divalent cations (e.g., [Ca2+] over 1 mmol?L?1). To eliminate interference from calcium and magnesium, two pretreatment strategies were established based on cation exchange and dialysis. These pretreatments were convenient and were found to be highly effective in removing calcium and magnesium in protein samples. By using the modified Lowry method with these pretreatments, proteins in standard solutions and in wastewater samples were successfully quantified with good reliability and reproducibility. In addition, we demonstrated that simultaneous quantification of humic substances with the modified Lowry method was not affected by the two pretreatments. These approaches are expected to be applicable to protein and humic substance determination in different research fields, in cases where the modified Lowry method is sensitive to divalent cation concentrations.  相似文献   

6.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

7.
8.
Aggregation of nucleosomes by divalent cations.   总被引:1,自引:1,他引:0       下载免费PDF全文
Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches.  相似文献   

9.
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.  相似文献   

10.
Ferritin. Binding of beryllium and other divalent metal ions   总被引:1,自引:0,他引:1  
Rat liver homogenates in 0.1 M Tris, pH 7.5, were heated to 80 degrees C, cooled immediately, and centrifuged at 24,000 X g, and 7Be2+ was added to the supernatant. Twenty-five per cent of the radioactivity was bound to a single protein. It was purified to homogeneity and identified to be ferritin as judged by different criteria. These were sucrose density gradient centrifugation, electrophoresis in polyacrylamide gel of the native or sodium dodecyl sulfate-treated protein, reactivity to antibodies, isoelectric focusing, and total amino acid composition. Comparative study of the ability of ferritin or apoferritin to bind Cd2+, Zn2+, Cu2+, and Be2+ was conducted by using a gel equilibrium technique, Centifree micropartition technique, and microcentrifuge desalting technique. Ferritin could be saturated with Cd2+ or Zn2+ or Cu2+ but not with Be2+ even after 800 g atoms of Be2+ were bound. None of the bound Be2+ was dialyzable at 4 degrees C in 0.05 Tris acetate buffer, pH 8.5, but at pH 6.5 over 80% of the bound metal ion was dialyzed after 72 h. By contrast, apoferritin bound similar amounts of all four metal ions, some of which were dialyzable. By spectrophotometric titrations at pH 6.5 of Be2+ with sulfosalicylic acid (SSA), BeKDSSA was calculated to be 5.0 X 10(-6) M and by competition of sulfosalicyclic acid and ferritin for Be2+ the BeKDferritin was calculated to be 6.8 X 10(-6) M.  相似文献   

11.
Y Doi  F Kim  S Kido 《Biochemistry》1990,29(6):1392-1397
Calcium binding of swine plasma gelsolin was examined. When applied to ion-exchange chromatography, its elution volume was drastically altered depending on the free Ca2+ concentration of the medium. The presence of two classes of Ca2+ binding sites, high-affinity sites (Kd = 7 microM) and low-affinity sites (Kd = 1 mM), was suggested from the concentration dependence of the elution volume. The tight binding sites were specific for Ca2+. The weakly bound Ca2+ could be replaced by Mg2+ once the tight binding sites were occupied with Ca2+. The binding of metal ions was totally reversible. Circular dichroism measurement of plasma gelsolin indicated that most change in secondary structure was associated with Ca2+ binding to the high-affinity sites. Binding of Mg2+ to the low-affinity sites caused a secondary structural change different from that caused by Ca2+ bound to the high-affinity sites. Gel permeation chromatography exhibited a small change in Stokes radius with and without Ca2+. Microheterogeneity revealed by isoelectric focusing did not relate to the presence of two classes of Ca2+ binding sites. These results indicated that plasma gelsolin drastically altered its surface charge property due to binding of Ca2+ or Ca2+, Mg2+ with a concomitant conformational change.  相似文献   

12.
Role of mono- and divalent metal cations in the catalysis by yeast aldolase   总被引:1,自引:0,他引:1  
The rate of deuterium exchange between [1-(S)-2H]dihydroxyacetone 3-phosphate and the solvent catalyzed by native and metal-substituted yeast aldolases has been measured. In the presence of 0.1 M potassium acetate at 15 degrees C, pH 7.3, the deuterium exchange reaction catalyzed by native yeast aldolase has a kcat of 95 s-1. In contrast to the 7-fold activity enhancement by 0.1 M potassium ion (relative to 0.1 M sodium ion) of the cleavage of D-fructose 1,6-bisphosphate catalyzed by native yeast aldolase, a negligible (1.1-fold) activation by 0.1 M potassium ion is observed in the rate of dedeuteration of [1(S)-2H]dihydroxyacetone 3-phosphate. The order of reactivity of the yeast metalloaldolases in the deuterium exchange roughly parallels that seen in the fructose bisphosphate cleavage reaction. These findings suggest that the carbonyl groups of enzyme-bound D-fructose 1,6-bisphosphate and dihydroxyacetone phosphate are both polarized by the active site divalent metal cation. A mechanistic formulation consistent with the results of this and the previous paper is presented.  相似文献   

13.
K Grizzuti  G E Perlmann 《Biochemistry》1975,14(10):2171-2175
Dialysis equilibrium measurements at 25 degrees indicate that, at pH 6.8 and at a concentration of 1.0 times 10(-10) 3 M MnC12 or CoC12, phosvitin binds 113 Mn2+ and 120 Co2+. The binding is cooperative at low cation concentrations. The number of Mg2+, Ca2+, Mn2+, and Co2+ bound is not affected by temperatures of up to 60 degrees; however, the cooperactivity is enhanced. Optical rotatory dispersion and circular dichroism studies indicate that a conformational change occurs on binding of Mn2+ and Co2+ which parallels the one produced by Ca2+ and reported elsewhere [Grizzuti, K., and Perlmann, G.E. (1973), Biochemistry 12, 4399]. The conformational changes induced by Mg2+ and Mn2+ follow different paths. Upon binding of Mn2+ and Co2+ the intrinsic viscosity, [eta], of phosvitin decreases from about 0.5 to 0.03 dl/g, while Mg2+ and Ca2+ decrease [eta] to 0.048 dl/g. The ultraviolet absorption spectrum of phosvitin is altered upon binding of Ca2+, Mn2+, and Co2+, but not upon binding of Mg2+; an increase of the temperature to 60% has no further effect on the spectra.  相似文献   

14.
15.
Several salts of alkali, alkaline earth metal and organic ammonium cations of a complex anion [ML2]2− {Where L = dipicolinato dianion, M = copper(II), nickel(II) and zinc(II)} are prepared. The coordination effect of [ML2]2− with the cations such as sodium, potassium, calcium, magnesium, and organic cations namely diammonium cation of 1,5-pentanediamine, diammonium cation of 1,8-octyldiamine, mono ammonium cation of 4-aminobenzylamine are studied by determining their X-ray crystal structures. Depending on the nature of cations, four different types of structures are obtained. When calcium is the cation a polymeric structure with calcium ions bridging the [ML2]2− is observed. The salts having sodium and potassium cations form polymeric chain like structures by oxo and aqua bridges. In the case of magnesium, the hydrated form of magnesium cations coordinates to [ML2]2−. The organic ammonium salts of [ML2]2− have the structural features of conventional ionic complexes. These salts easily exchange cations. The organic ammonium salts of [ML2]2− decomposes to give the corresponding metal oxides at relatively low temperature range 300-450 °C.  相似文献   

16.
We have used the osmotic pressure technique of Rand, Parsegian and co-workers (Nature 259 (1976) 601–603) to investigate the effect of anion species on the binding of M2+ to dipalmitoylphosphatidylcholine bilayers. Calcium and magnesium salts show a complex behavior which is consistent with both anion binding and screening. We observe virtually no change, within the accuracy of our experiment, in the decay of repulsive pressure with inter-bilayer separation for the acetate and nitrate salts of magnesium and calcium; however, the chloride salt does show a different pressure decay. At any given bilayer separation, , with calcium and magnesium salts present, the anions produce a decrease in the repulsive pressure in the order acetate > Cl > NO3.  相似文献   

17.
N-Acylethanolamines including anandamide (an endogenous ligand for cannabinoid receptors) are released from N-acylphosphatidylethanolamine (N-acyl-PE) by the catalysis of a phosphodiesterase of the phospholipase D type. The enzyme was solubilized from the particulate fractions of rat heart with the aid of octyl glucoside, and partially purified by anion-exchange chromatography. The enzyme hydrolyzed N-palmitoyl-PE with a specific activity of 17 nmol/min/mg protein at 37 degrees C. The enzyme activity increased dramatically up to 30-fold by millimolar order of Ca(2+). Ca(2+) could be replaced with other divalent cations such as Co(2+), Mg(2+), Mn(2+), Ba(2+), Sr(2+) and Ni(2+). The hydrolysis of N-arachidonoyl-PE (a precursor of anandamide) was also markedly stimulated by Ca(2+).  相似文献   

18.
Human serum albumin (HSA) is an abundant multiligand carrier protein, linked to progression of Alzheimer’s disease (AD). Blood HSA serves as a depot of amyloid β (Aβ) peptide. Aβ peptide-buffering properties of HSA depend on interaction with its ligands. Some of the ligands, namely, linoleic acid (LA), zinc and copper ions are involved into AD progression. To clarify the interplay between LA and metal ion binding to HSA, the dependence of LA binding to HSA on Zn2+, Cu2+, Mg2+ and Ca2+ levels and structural consequences of these interactions have been explored. Seven LA molecules are bound per HSA molecule in the absence of the metal ions. Zn2+ binding to HSA causes a loss of one bound LA molecule, while the other metals studied exert an opposite effect (1–2 extra LA molecules are bound). In most cases, the observed effects are not related to the metal-induced changes in HSA quaternary structure. However, the Zn2+-induced decline in LA capacity of HSA could be due to accumulation of multimeric HSA forms. Opposite to Ca2+/Mg2+-binding, Zn2+ or Cu2+ association with HSA induces marked changes in its hydrophobic surface. Overall, the divalent metal ions modulate LA capacity and affinity of HSA to a different extent. LA- and Ca2+-binding to HSA synergistically support each other. Zn2+ and Cu2+ induce more pronounced changes in hydrophobic surface and quaternary structure of HSA and its LA capacity. A misbalanced metabolism of these ions in AD could modify interactions of HSA with LA, other fatty acids and hydrophobic substances, associated with AD.  相似文献   

19.
Adenylyl cyclase toxin of Bordetella pertussis has been shown by several investigators to require Ca(2+) for its actions on target cells, but little is known about the nature and specificity of divalent metal binding to this novel toxin. Calcium is the preferred divalent metal since toxic actions are markedly reduced in the presence of divalent species other than calcium. Mn(2+) EPR was used to quantitate and characterize divalent metal binding and revealed that the toxin contains approximately 40 divalent metal sites, consisting of at least one class of high-affinity sites that bind Mn(2+) with a K(D) of 0.05 to 0.35 microM and one or more classes of lower affinity sites. Water proton relaxation data indicate that approximately 30 of these sites are completely inaccessible to bulk solvent. Our observations, together with the sequence homology between adenylyl cyclase toxin and the alkaline protease of Pseudomonas aeruginosa, indicate that the formation of five beta-sheet helices within the repeat domain of the toxin upon binding Ca(2+) is required for cell intoxication.  相似文献   

20.
Cytosolic sulfotransferases (STs), traditionally viewed as Phase II drug-metabolizing or detoxifying enzymes, are increasingly being implicated in the metabolism of endogenous biologically-active molecules. Except for studies on changes in their levels of expression and activity in the early stage of development in mammals, very little is known about how these enzymes are regulated. In this study, the regulatory effects of divalent metal cations on the activity of human cytosolic STs were quantitatively evaluated. Results obtained indicate that all nine human cytosolic STs examined are partially or completely inhibited/stimulated by the ten divalent metal cations tested at 10 mM concentration. Compared with the other metal cations, the inhibitory or stimulatory effect of Mg2+ and Ca2+ on the activities of the human cytosolic STs appeared to be relatively smaller. Concentration-dependent effects of the divalent metal cations were further examined. The IC50 or EC50 values determined for different divalent metal cations were mostly above their normal physiological concentration ranges. In a few cases, however, IC50 values close to the physiological concentrations of certain divalent metal cations were observed. Using the monoamine (M)-form phenol ST (PST) as a model, it was demonstrated that the K(m) for dopamine changed only slightly with increasing concentrations of Cd2+, whereas the V(max) was dramatically decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号