首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Jttel  D Wissing  P A Bauer    G C Li 《The EMBO journal》1992,11(10):3507-3512
Heat treatment and various other stresses render tumor cells resistant to cytotoxicity mediated by tumor necrosis factors (TNFs). Here, we elucidate the molecular basis of this phenomenon by demonstrating that the major heat shock protein, hsp70, protects tumor cells from TNF cytotoxicity even in the absence of stress. The human hsp70 gene was stably introduced into highly TNF-sensitive WEHI-S tumor cells both in the sense and antisense orientation. All clones constitutively expressing the exogenous human hsp70 gene were protected from TNF-mediated killing approximately 1000-fold. Remarkably, the growth of one clone was actually stimulated by low concentrations of TNF. Moreover, a clone expressing antisense hsp70 RNA was rendered extremely sensitive to TNFs. Hsp70-mediated protection from TNF cytotoxicity was confirmed in transient expression experiments employing retroviral vectors. Changes in cellular sensitivity to TNF were not associated with alterations in the binding of TNF to its receptors. Neither the transfection procedure itself nor overexpression of the low molecular weight heat shock protein, hsp27, had any effect on cellular susceptibility to TNFs. Our data suggest that hsp70 may increase the oncogenic potential of some tumor cells by providing them with an escape mechanism from immunological defense.  相似文献   

2.
Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.  相似文献   

3.
Micromolar concentrations of glucocorticoids rendered L-M cells (a murine tumorigenic fibroblast line) less sensitive to the cytotoxic activity of murine TNF. The potency of different steroids paralleled their known anti-inflammatory potency, and pretreatment was more effective than post treatment. Sex steroids and mineralocorticoids were ineffective. Dexamethasone also decreased the sensitivity of MCF-7 (a human mammary carcinoma line) to the cytotoxic activity of human recombinant TNF. Pretreatment of both cell lines reduced the affinity of specific cell surface receptors for the binding of their species 125I-TNF about 3-fold while retaining the same number of binding sites. The decrease in sensitivity was not due solely to the inhibition of early TNF-induced events (such as binding, internalization or signal transduction). Dexamethasone modestly enhanced inhibition beyond that of neutralizing antiserum alone when both were added midway in the L-M killing reaction (after receptor down regulation but before the onset of complete cell death).  相似文献   

4.
Tumor necrosis factor alpha (TNF-alpha) exerts multiple actions on endothelial cells including among others the expression of pro-coagulant activity and adhesion molecules, and secretion of cytokines. We now show that TNF-alpha induces a time- and dose-dependent cytotoxic effect on cultured bovine aortic endothelial cells. This TNF-induced cytotoxicity, which is preceded by increased production of nitric oxide (NO), is significantly decreased by the NO synthase inhibitor N-iminoethyl-L-ornithine (L-NIO). Dexamethasone, which prevents the expression of cytokine-induced NO synthase in endothelial cells, also inhibits TNF-alpha-dependent cytotoxicity. The results indicate that NO is involved in the cytotoxic effect of TNF-alpha on endothelial cells.  相似文献   

5.
Regulation of tumor necrosis factor cytotoxicity by calcineurin   总被引:1,自引:0,他引:1  
Cyclosporin (CsA) inhibits mitochondrial death signaling and opposes tumor necrosis factor (TNF)-induced apoptosis in vitro. However, CsA is also a potent inhibitor of calcineurin, a phosphatase that may participate in cell death. Therefore, we tested the hypothesis that calcineurin regulates TNF cytotoxicity in rat hepatoma cells (FTO2B). TNF-treated FTO2B cells appeared apoptotic by DNA fragmentation, nuclear condensation, annexin V binding, and caspase activation. We studied two calcineurin inhibitors, CsA and FK506, and found that each potently inhibited TNF cytotoxicity. Western blot demonstrated calcineurin in FTO2B homogenates. In a model of mitochondrial permeability transition (MPT), we found that CsA prevented MPT and cytochrome c release, while FK506 inhibited neither. In summary, we present evidence that calcineurin participates in an apoptotic death pathway activated by TNF. CsA may oppose programmed cell death by inhibiting calcineurin activity and/or inhibiting mitochondrial signaling.  相似文献   

6.
Resistance against the cytotoxic actions of tumor necrosis factor alpha (TNF) is an active process requiring the synthesis of TNF-inducible proteins. The specific TNF-induced proteins so far identified (manganese superoxide dismutase and plasminogen activator inhibitor type 2) as having a role in resistance against TNF cytotoxicity are able to confer only partial protection to cells, suggesting that other genes are involved. A20 is a TNF-induced primary response gene which encodes a novel zinc finger protein. In this report we demonstrate that A20 protein is induced by TNF in a variety of cells. A survey of A20 expression in human breast carcinoma cell lines that are either sensitive or resistant to TNF cytotoxicity revealed increased expression of A20 message and protein in TNF-resistant cells. Constitutive expression of A20 after stable transfection of NIH 3T3 and WEHI 164 cells results in significant, but partial, resistance to TNF cytotoxicity. This work gives additional support to a role for TNF-induced immediate early response genes in protecting cells from TNF-induced death.  相似文献   

7.
Protection from tumor necrosis factor cytotoxicity by protease inhibitors   总被引:6,自引:0,他引:6  
Tumor necrosis factor (TNF) is cytocidal for human and murine cells when protein synthesis is inhibited by cycloheximide, but some protease inhibitors completely protect these cells from TNF cytotoxicity. Inhibitors of chymotrypsin-like proteases are active at lower concentrations than inhibitors of trypsin-like proteases. Both irreversible inhibitors, such as alkylating compounds, and reversible inhibitors, such as substrates of proteases, protect cells from the cytocidal activity of TNF. This protection is most effective when the cells are pretreated with these inhibitors before addition of TNF. When the protease inhibitors are removed, the cells gradually lose resistance to TNF cytotoxicity. The inhibitors do not interfere with the functioning of TNF-receptor complexes, since SK-MEL-109 melanoma cells treated with a protease inhibitor synthesize a TNF-induced protein. These findings suggest that a protease in involved in the cytocidal action of TNF.  相似文献   

8.
Tumor necrosis factor (TNF) is a cytokine which induces cytotoxicity in some but not all tumor cells. Initial studies of five tumor cell lines demonstrated that TNF was able to rapidly (within 30 min) modulate tyrosine protein kinase activity of epidermal growth factor (EGF) receptors on tumor cell lines which were sensitive to the cytotoxic effects of TNF but not alter EGF receptor kinase activity in TNF-resistant tumor cells. Two tumor cell lines (ME-180 cervical carcinoma and T24 bladder carcinoma) which have been shown to express similar TNF-binding characteristics but differ in their sensitivity to the cytotoxic actions of TNF were chosen for further characterization. Treatment of TNF-sensitive ME-180 cells with 1 nM TNF resulted in a 3-fold stimulation of EGF receptor tyrosine protein kinase activity within 10 min which correlated with increased phosphorylation of EGF receptor protein itself. In addition, dose-response studies indicate that similar concentrations of TNF modulate both ME-180 cell growth and EGF receptor kinase activity. Treatment of TNF-resistant T24 cells showed that TNF had no significant effect on their growth, EGF receptor tyrosine protein kinase activity, or phosphorylation of EGF receptor protein although EGF receptor kinase activity was stimulated by EGF. Quantitation of receptors expressed on the surface of ME-180 and T24 cells demonstrated a 3-fold difference between the number of EGF-binding sites on T24 (100,000) versus ME-180 cells (300,000), suggesting the relative abundance of EGF receptor does not solely account for differential effects of TNF on EGF receptor activation in these two cell lines. Phosphoamino acid analysis of EGF receptor from 32P-equilibrated ME-180 cells demonstrated that TNF-induced phosphorylation of amino acids which was quantitatively similar to that of EGF but distinct from the effects of phorbol ester. However, unlike EGF, TNF was unable to stimulate EGF receptor kinase activity in ME-180 cell lysates. The kinetics of EGF receptor activation and the metabolic consequence of activation of EGF receptor activity by TNF appear to be distinct from those induced by EGF. These results suggest that TNF-induced modulation of EGF receptor occurs through a unique mechanism and may play a role in the cytotoxic actions of TNF.  相似文献   

9.
Tumor necrosis factor (TNF)-alpha is a macrophage-derived proinflammatory cytokine implicated in hepatotoxicity. In the present studies, p55 TNF receptor 1 (TNFR1) -/- mice were used to assess the role of TNF-alpha in acetaminophen-induced antioxidant defense. Treatment of wild-type (WT) mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increased serum alanine transaminases. This was correlated with a rapid depletion of hepatic glutathione (GSH). Whereas in WT mice GSH levels returned to control after 6-12 h, in TNFR1-/- mice recovery was delayed for 48 h. Delayed induction of heme oxygenase-1 and reduced expression of CuZn superoxide dismutase were also observed in TNFR1-/- compared with WT mice. This was associated with exaggerated hepatotoxicity. In WT mice, acetaminophen caused a time-dependent increase in activator protein-1 nuclear binding activity and in c-Jun expression. This response was significantly attenuated in TNFR1-/- mice. Constitutive NF-kappaB binding activity was detectable in livers of both WT and TNFR1-/- mice. A transient decrease in this activity was observed 3 h after acetaminophen in WT mice, followed by an increase that was maximal after 6-12 h. In contrast, in TNFR1-/- mice, acetaminophen-induced decreases in NF-kappaB activity were prolonged and did not return to control levels for 24 h. These data indicate that TNF-alpha signaling through TNFR1 plays an important role in regulating the expression of antioxidants in this model. Reduced generation of antioxidants may contribute to the increased sensitivity of TNFR1-/- mice to acetaminophen.  相似文献   

10.
Several tumor target cell lines, prototypically K562 cells, are resistant to lysis by recombinant tumor necrosis factor (TNF alpha) but are killed by monocytes expressing membrane-associated TNF, suggesting that membrane TNF could account for monocyte-mediated cytotoxicity. Formaldehyde-fixed monocytes or extracted monocyte membrane fragments are cytotoxic to K562 target cells. Treatment of monocytes with interferon-gamma (IFN-gamma) increases cytotoxicity by live and fixed cells or by extracted monocyte membranes. Both TNF and TNF receptors are detectable on monocyte membranes by FACS analysis, and the levels of each are modulated by treatment with IFN-gamma. Cytotoxicity can be inhibited by either anti-TNF or anti-TNF receptor antibodies. Incubation of effector cells with exogenous soluble TNF prior to fixation or membrane preparation increases their cytotoxicity. In contrast, incubation of the target cells with exogenous TNF neither increases nor decreases killing by effector cell membrane fragments or intact effector cells. The data suggest that the TNF receptors on the effector cell, but not on the target cell, play a crucial role in TNF-mediated cytotoxicity.  相似文献   

11.
12.
Tumor necrosis factor (TNF) is a monokine which is involved in macrophage-mediated cytotoxicity (MMC). We have previously reported that peroxidases can activate thioglycollate-induced macrophages to the tumoricidal state in vitro. The present study was undertaken in an attempt to correlate peroxidase-induced MMC with production of TNF. Horseradish peroxidase (HRP) was used as the principal model for these studies. Resident and thioglycollate-induced macrophages exposed to peroxidases were examined for both MMC against 3T12 cells and production of TNF. Thioglycollate-induced macrophages exposed to HRP, bovine lactoperoxidase, or human myeloperoxidase demonstrated enhanced secretion of TNF. When exposed to HRP, both resident and thioglycollate-induced macrophages secreted significant amounts of TNF and acquired the ability to lyse 3T12 cells. However, resident macrophages were considerably less efficient in both their cytotoxic activity and TNF secretion. Macrophage-mediated cytotoxicity was eliminated by the addition of specific antisera to TNF. In addition, replacement of culture supernatants within 24 hr after exposure of the macrophages to HRP increased tumor cell killing in the absence of additional detectable TNF production, suggesting that other factors may be involved in peroxidase-induced MMC. These results indicate that TNF is intimately associated with peroxidase-induced MMC and suggest a possible role for peroxidases as immunomodulators via augmentation of macrophage capacities and functions.  相似文献   

13.
The CD95 (Fas/APO-1) and tumor necrosis factor (TNF) receptor pathways share many similarities, including a common reliance on proteins containing 'death domains' for elements of the membrane-proximal signal relay. We have created mutant cell lines that are unable to activate NF-kappaB in response to TNF. One of the mutant lines lacks RIP, a 74 kDa Ser/Thr kinase originally identified by its ability to associate with Fas/APO-1 and induce cell death. Reconstitution of the line with RIP restores responsiveness to TNF. The RIP-deficient cell line is susceptible to apoptosis initiated by anti-CD95 antibodies. An analysis of cells reconstituted with mutant forms of RIP reveals similarities between the action of RIP and FADD/MORT-1, a Fas-associated death domain protein.  相似文献   

14.
Tumor necrosis factor-(TNF-) triggers degranulation and oxygen radical release in adherentneutrophils. The p60TNF receptor (p60TNFR) is responsible forproinflammatory signaling, and protein kinase C (PKC) is a candidatefor the regulation of p60TNFR. Both TNF- and the PKC-activatorphorbol 12-myristate 13-acetate triggered phosphorylation of p60TNFR.Receptor phosphorylation was on both serine and threonine but not ontyrosine residues. The PKC- isotype is a candidate enzyme for serinephosphorylation of p60TNFR. Staurosporine and the PKC- inhibitorrottlerin inhibited TNF--triggered serine but not threoninephosphorylation. Serine phosphorylation was associated withreceptor desensitization, as inhibition of PKC resulted in enhanceddegranulation (elastase release). After neutrophil activation, PKC-was the only PKC isotype that associated with p60TNFR within thecorrect time frame for receptor phosphorylation. In vitro, onlyPKC-, but not the -, I-, II-, or -isotypes, wascompetent to phosphorylate the receptor, indicating that p60TNFR is adirect substrate for PKC-. These findings suggest a selective rolefor PKC- in negative regulation of the p60TNFR and ofTNF--induced signaling.

  相似文献   

15.
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-alpha) production from adipose tissue is elevated in obese animal models and in obese humans. It plays an important role in the induction of insulin resistance in experimental animals. In this study, we examined hypothalamic tissue expression of TNF-alpha and its receptors and TNF-alpha expression of adipose tissue in lean C57BLKSJ+/+ and obese polygenic New Zealand obese (NZO) mice. Obese animals exhibited hyperglycemia, hyperinsulinemia, hypertriglyceridemia, and hypercholesterinemia. Using RT-PCR, we observed increased expression (2.4-fold) of TNF receptor 2 (p75) in the hypothalamus of obese mice. TNF-alpha expression in adipose tissue of obese mice was eight times higher than in controls. TNF-alpha and TNF receptor 1 (p55) expression in hypothalamic tissue was similar in obese and lean animals. These results suggest that the hypothalamic TNF receptor 2 (p75) might play a role in obesity by modulating the actions of TNF-alpha in conditions of leptin resistance.  相似文献   

16.
We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Co-immunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-alpha. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-kappaB and increased NF-kappaB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS(1-723)) was found to inhibit NF-kappaB activation by TNF-alpha. Co-precipitation and co-immunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK.  相似文献   

17.
The ability of activated monocytes/macrophages to exert cytotoxic effects in vitro which are preferentially manifest on target cells displaying a transformed phenotype has elicited intense efforts aimed at a molecular characterization of the underlying mechanism. This multistep reaction is typified by an apparently stringent requirement for conjugation between the effector and target to facilitate cytotoxicity, which has therefore long caused bias against the role of soluble effector molecules in mediating target cell damage. However, several laboratories have recently demonstrated a compelling role for at least one such mediator, tumor necrosis factor (TNF), in cell-mediated cytotoxicity exerted against certain target cells; these studies indicated that specific anti-TNF antibodies could block direct monocyte/macrophage-mediated cytotoxicity of TNF-sensitive targets. More recently we have shown that some targets which are completely resistant to soluble or fluid-phase TNF are effectively lysed by a TNF-dependent mechanism upon coculture with activated macrophages under conditions in which conjugation is facilitated. Furthermore, macrophage-mediated cytolysis of both TNF-sensitive and TNF-resistant targets occurs independently of the action of secreted TNF via this mechanism. The purpose of this review is to consider the implications of distinct modes of effector cell delivery of TNF to the target for molecular characterization of the target injury phase of macrophage-mediated tumor cytotoxicity.  相似文献   

18.
The 55-kDa receptor for tumor necrosis factor (TR55) triggers multiple signaling cascades initiated by adapter proteins like TRADD and FAN. By use of the primary amine monodansylcadaverine (MDC), we addressed the functional role of tumor necrosis factor (TNF) receptor internalization for intracellular signal distribution. We show that MDC does not prevent the interaction of the p55 TNF receptor (TR55) with FAN and TRADD. Furthermore, the activation of plasmamembrane-associated neutral sphingomyelinase activation as well as the stimulation of proline-directed protein kinases were not affected in MDC-treated cells. In contrast, activation of signaling enzymes that are linked to the "death domain" of TR55, like acid sphingomyelinase and c-Jun-N-terminal protein kinase as well as TNF signaling of apoptosis in U937 and L929 cells, are blocked in the presence of MDC. The results of our study suggest a role of TR55 internalization for the activation of select TR55 death domain signaling pathways including those leading to apoptosis.  相似文献   

19.
20.
To investigate the signaling mechanism of the 55-kDa tumor necrosis factor (TNF) receptor a functional transfection based assay was developed. The human 55-kDa TNF receptor, stably expressed in mouse L929 cells, was demonstrated to be activated specifically by agonist antibodies and to initiate a signal for cellular cytotoxicity. A deletion mutant of the human TNF receptor lacking most of the cytoplasmic domain was found to be completely defective in generating the signal for cytotoxicity. Additionally, expression of the truncated receptor substantially suppressed signaling by endogenous mouse TNF receptors in response to TNF, but not in response to specific anti-murine TNF receptor antibodies. These results suggest that aggregation of 55-kDa TNF receptor intracellular domains, which are not associated in the absence of ligand, is an important component of the signal for cellular toxicity. This work also provides an example of a dominant negative mutation in a transmembrane receptor that lacks a tyrosine kinase domain, and suggests a more general utility of dominant negative mutations in the investigation of cytokine receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号