共查询到20条相似文献,搜索用时 11 毫秒
1.
Understanding and modeling alternating tangential flow filtration for perfusion cell culture 下载免费PDF全文
William Kelly Jennifer Scully Di Zhang Gang Feng Mathew Lavengood Jason Condon John Knighton Ravinder Bhatia 《Biotechnology progress》2014,30(6):1291-1300
Alternating tangential flow (ATF) filtration has been used with success in the Biopharmaceutical industry as a lower shear technology for cell retention with perfusion cultures. The ATF system is different than tangential flow filtration; however, in that reverse flow is used once per cycle as a means to minimize fouling. Few studies have been reported in the literature that evaluates ATF and how key system variables affect the rate at which ATF filters foul. In this study, an experimental setup was devised that allowed for determination of the time it took for fouling to occur for given mammalian (PER.C6) cell culture cell densities and viabilities as permeate flow rate and antifoam concentration was varied. The experimental results indicate, in accordance with D'Arcy's law, that the average resistance to permeate flow (across a cycle of operation) increases as biological material deposits on the membrane. Scanning electron microscope images of the post‐run filtration surface indicated that both cells and antifoam micelles deposit on the membrane. A unique mathematical model, based on the assumption that fouling was due to pore blockage from the cells and micelles in combination, was devised that allowed for estimation of sticking factors for the cells and the micelles on the membrane. This model was then used to accurately predict the increase in transmembane pressure during constant flux operation for an ATF cartridge used for perfusion cell culture. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1291–1300, 2014 相似文献
2.
Geraerts M Michiels M Baekelandt V Debyser Z Gijsbers R 《The journal of gene medicine》2005,7(10):1299-1310
BACKGROUND: HIV-1-derived vectors are promising tools for gene transfer into the brain. Application of these vectors for gene therapy or for the creation of animal models for neurodegenerative diseases requires standardization and upscaling of lentiviral vector production methods. METHODS: In this study, serum-free HIV-1 vector production was efficiently upscaled by use of cell factories and the introduction of tangential flow filtration (TFF) prior to centrifugation. RESULTS: Vector titers (TU/ml) and p24 values (pg p24/ml) for a serum-free HIV-1 vector produced in cell factories and using TFF prior to centrifugation were comparable to those of small-scale productions. TFF allowed a 66-fold concentration of the vectors with complete vector recovery. Further concentration of the vector (30-fold) was achieved either by low-speed centrifugation or by ultracentrifugation. Combination of TFF and ultracentrifugation resulted in a vector recovery of 90-100% and titers that increased 1800-fold and 900-fold for transducing units and p24 concentration, respectively. CONCLUSIONS: With this new standardized method for lentiviral vector production and concentration, 1 ml of concentrated vector is routinely produced with titers of 10(9)-10(10) TU/ml starting from 2 l of cell-culture medium. Moreover, stereotactic injection of this vector in mouse striatum resulted in a large transduced brain volume in the absence of any immune response. 相似文献
3.
The demand for increased formulation concentrations for protein therapeutics puts a significant strain on already existing tangential flow filtration (TFF) systems that were constructed with lower protein concentration targets as part of their design criteria. TFF is commonly used to buffer exchange and concentrate the product to the appropriate drug substance concentration. Analyzing the ability of an existing TFF system to process under conditions outside its original design specifications can be challenging. In this analysis, we present a systematic approach to assess the operational limits of a TFF process with consideration of system performance parameters for changing process targets. In two new engineering diagrams, the recovery efficiency diagram and the operating space plot, all relevant operational constraints and parameters are related to allow rapid process fit evaluation. The engineering assessment of TFF systems presented in this article allows a rational review of system limitations during process fit evaluations of existing TFF systems. It also provides a rational basis for targeted system upgrades and setting system design specifications for the design of new systems if existing systems are found inadequate. Biotechnol. Bioeng. 2012; 109: 3084–3092. © 2012 Wiley Periodicals, Inc. 相似文献
4.
Rimi Miyaoka Yuji Tsunekawa Yae Kurosawa Takako Sasaki Azusa Onodera Kenji Sakamoto Yuko Kakiuchi Mikako Wada Yuko Nitahara-Kasahara Hiromi Hayashita-Kinoh Takashi Okada 《Biotechnology and bioengineering》2023,120(11):3311-3321
Adeno-associated virus (AAV) vector can efficiently transduce therapeutic genes in various tissue types with less side effects; however, owing to complex multistep processes during manufacture, there have been surges in the pricing of recently approved AAV vector-based gene therapy products. This study aimed to develop a simple and efficient method for high-quality purification of AAV vector via tangential flow filtration (TFF), which is commonly used for concentration and diafiltration of solutions during AAV vector purification. We established a novel purification method using TFF and surfactants. Treatment with two classes of surfactants (anionic and zwitterionic) successfully inhibited the aggregation of residual proteins separated from the AAV vector in the crude product by TFF, obtaining a clearance of 99.5% residual proteins. Infectivity of the AAV vector purified using the new method was confirmed both in vitro and in vivo, and no remarkable inflammation or tissue damage was observed in mouse skeletal muscle after local administration. Overall, our proposed method could be used to establish a platform for the purification of AAV vector. 相似文献
5.
Robust cell retention devices are key to successful cell culture perfusion. Currently, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) are most commonly used for this purpose. TFF, however, suffers from poor fouling mitigation, which leads to high filtration resistance and product retention, and ATF suffers from long residence times and cell accumulation. In this work, we propose a filtration system for alternating tangential flow filtration, which takes full advantage of the fouling mitigation effects of alternating flow and reduces cell accumulation. We have tested this novel setup in direct comparison with the XCell ATF® as well as TFF with a model feed comprising yeast cells and bovine serum albumin as protein at harsh permeate to feed flow conditions. We found that by avoiding the dead-end design of a diaphragm pump, the proposed filtration system exhibited a reduced filtration resistance by approximately 20% to 30% (depending on feed rate and permeate flow rate). A further improvement of the novel setup was reached by optimization of phase durations and flow control, which resulted in a fourfold extension of process duration until hollow fiber flow channel blockage occurred. Thus, the proposed concept appears to be superior to current cell retention devices in perfusion technology. 相似文献
6.
Peter C. J. Roach Vincent L. G. Postis Sarah E. Deacon Gareth S. A. Wright Jean C. Ingram Xiaobing Xia 《Molecular membrane biology》2013,30(8):609-616
The preparation of cell membranes by ultracentrifugation of bacterial cell lysates, a pre-requisite for the purification of over-expressed membrane proteins, is both time-consuming and difficult to perform on a large scale. To overcome this bottleneck in the structural investigation of such proteins in the UK Membrane Protein Structure Initiative, we have investigated the alternative use of tangential flow filtration for preparation of membranes from Escherichia coli. This method proved to be superior to the conventional use of ultracentrifuges both in speed and in yield of membrane protein. Moreover, it could more readily be scaled up to process larger quantities of bacterial cells. Comparison of the purity and monodispersity of an over-expressed membrane protein purified from conventionally-prepared membranes and from membranes prepared by filtration revealed no substantial differences. The approach described should therefore be of general use for membrane protein preparation for a wide range of applications, including both structural and functional studies. 相似文献
7.
The effect of organism, enzyme, method of cell breakage and membrane characteristics on the separation of bacterial enzymes from cell debris by tangential flow filtration has been studied. The effectiveness of separation was assessed by process time, enzyme yield and specific activity, and turbidity of the filtrate. For a particular organism and enzyme, method of cell breakage and membrane characteristics significantly influenced separation performance, though results indicate that it is not yet possible to optimize all aspects of performance simultaneously. 相似文献
8.
Jacob Elmer David R. Harris Guoyong Sun Andre F. Palmer 《Biotechnology progress》2009,25(5):1402-1410
A recent study by Palmer, Sun, and Harris (Biotechnol. Prog., 25:189–199, 2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC‐grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch‐mode diafiltration step to the previously mentioned TFF Hb purification process. The bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) and 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS‐PAGE, and LC‐MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three stage TFF process is sufficient to produce HPLC‐grade bHb. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
9.
Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration 总被引:1,自引:0,他引:1
An industrial-scale methods for harvest of biologically active proteins form mammalian cell culture has been developed using tangential flow filtration. A robust and economical process capable of processing approximately 5000 L conditioned media/h with protein yields in excess of 99% has been achieved. A completely contained system has been designed in which total cell number and viability are maintained throughout the process. The process has successfully been implemented at 1.25 x 10(4) L scale for the recovery of kilogram quantities of pharmaceutical proteins such as recombinant tissue type plasminogen activator (rt-PA). 相似文献
10.
There is growing interest within the biopharmaceutical industry to improve manufacturing efficiency through process intensification, with the goal of generating more product in less time with smaller equipment. In monoclonal antibody (mAb) purification, a unit operation that can benefit from intensification is anion exchange (AEX) polishing chromatography. Single-pass tangential flow filtration (SPTFF) technology offers an opportunity for process intensification by reducing intermediate pool volumes and increasing product concentration without recirculation. This study evaluated the performance of an AEX resin, both in terms of host cell protein (HCP) purification and viral clearance, following concentration of a mAb feed using SPTFF. Results show that preconcentration of AEX feed material improved isotherm conditions for HCP binding, resulting in a fourfold increase in resin mAb loading at the target HCP clearance level. Excellent clearance of minute virus of mouse and xenotropic murine virus was maintained at this higher load level. The increased mAb loading enabled by SPTFF preconcentration effectively reduced AEX column volume and buffer requirements, shrinking the overall size of the polishing step. In addition, the suitability of SPTFF for extended processing time operation was demonstrated, indicating that this approach can be implemented for continuous biomanufacturing. The combination of SPTFF concentration and AEX chromatography for an intensified mAb polishing step which improves both manufacturing flexibility and process productivity is supported. 相似文献
11.
Parinaz Emami Seyed Pouria Motevalian Erin Pepin Andrew L. Zydney 《Biotechnology and bioengineering》2019,116(3):591-597
Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products. 相似文献
12.
Vikram Sundar Da Zhang Xianghong Qian S. Ranil Wickramasinghe John Paul Smelko Christina Carbrello Yara Jabbour Al Maalouf Andrew L. Zydney 《Biotechnology progress》2023,39(3):e3336
Alternating tangential flow filtration (ATF) has become one of the primary methods for cell retention and clarification in perfusion bioreactors. However, membrane fouling can cause product sieving losses that limit the performance of these systems. This study used scanning electron microscopy and energy dispersive X-ray spectroscopy to identify the nature and location of foulants on 0.2 μm polyethersulfone hollow fiber membranes after use in industrial Chinese hamster ovary cell perfusion bioreactors for monoclonal antibody production. Membrane fouling was dominated by proteinaceous material, primarily host cell proteins along with some monoclonal antibody. Fouling occurred primarily on the lumen surface with much less protein trapped within the depth of the fiber. Protein deposition was also most pronounced near the inlet/exit of the hollow fibers, which are the regions with the greatest flux (and transmembrane pressure) during the cyclical operation of the ATF. These results provide important insights into the underlying phenomena governing the fouling behavior of ATF systems for continuous bioprocessing. 相似文献
13.
Protein recovery from a bacterial lysate was accomplished using microfiltration membranes in a flat crossflow filter and in a cylindrical rotary filter. Severe membrane fouling yielded relatively low long-term permeate flux values of 10(-4)-10(-3) cm/s (where I cm/s = 3.6 x 10(4) L/m(2) - h). The permeate flux was found to be nearly independent of transmembrane pressure and to increase with increasing shear rate and decreasing solids concentration. The flux increased with shear to approximately the one-third power or greater for the flat filter and the one-half power or greater for the rotary filter; the stronger dependence for the rotary filter is thought to result from Taylor vortices enhancing the back transport of debris carried to the membrane surface by the permeate flow. The average protein transmission or sieving coefficient was measured at approximately 0.6, but considerable scatter in the transmission data was observed. The largest sieving coefficients were obtained for dilute suspensions at high shear rate. The rotary filter provided higher fluxes than did the flat filter for dilute suspensions, but not for concentrated suspensions. (c) 1995 John Wiley & Sons, Inc. 相似文献
14.
There is an increasing interest in the development of scaleable and reproducible plasmid DNA purification protocols for vaccine and gene therapy. The use of an integrated unit operation, comprising tangential flow microfiltration coupled with the adsorption of contaminants onto nitrocellulose membranes as a single processing step was examined in this work. Experiments were performed using a custom-built tangential flow microfiltration rig (membrane area=12.5 cm(2)). Tangential flow filtration-adsorption of E. coli lysates containing a plasmid product removed most solids (>75%) and decreased chromosomal DNA contamination by 75% w/w. Total plasmid DNA concentration and supercoiled content of the permeate were virtually identical to those of the feed, indicating a recovery yield of 100% (transmission equal to 1). Results were similar for E. coli lysates containing either a 6.9 kb or a 20 kb plasmid. Significant reductions in RNA, endotoxin, and protein levels were also observed. The reproducibility and potential for scale up of this integrated filtration-adsorption operation makes it at attractive option for intermediate- to large-scale pharmaceutical-grade plasmid processing. 相似文献
15.
In recent years, viral vector based in vivo gene delivery strategies have achieved a significant success in the treatment of genetic diseases. RNA virus-based episomal vector lacking viral glycoprotein gene (ΔG-REVec) is a nontransmissive gene delivery system that enables long-term gene expression in a variety of cell types in vitro, yet in vivo gene delivery has not been successful due to the difficulty in producing high titer vector. The present study showed that tangential flow filtration (TFF) can be effectively employed to increase the titer of ΔG-REVec. Concentration and diafiltration of ΔG-REVec using TFF significantly increased its titer without loss of infectious activity. Importantly, intracranial administration of high titer vector enabled persistent transgene expression in rodent brain. 相似文献
16.
Daniel J. Karst Kevin Ramer Erik H. Hughes Canping Jiang Pieter J. Jacobs Fernie G. Mitchelson 《Biotechnology progress》2020,36(6):e3040
Mammalian cells were grown to high density in a 3,000 L culture using perfusion with hollow fibers operated in a tangential flow filtration mode. The high-density culture was used to inoculate the production stage of a biomanufacturing process. At constant permeate flux operation, increased transmembrane pressures (TMPs) were observed on the final day of the manufacturing batches. Small scale studies suggested that the filters were not irreversibly fouled, but rather exposed to membrane concentration polarization that could be relieved by tangential sweeping of the hollow fibers. Studies were undertaken to analyze parameters that influence the hydrodynamic profile within hollow fibers; including filter area, cell density, recirculation flow rate, and permeate flow rate. Results indicated that permeate flow rate had the greatest influence on modulating TMP. Further evaluation showed a significant decrease in TMP when permeate flow was reduced, and this occurred without any negative effect on cell growth or viability. Hence, a 30% reduction of permeate flow rate was implemented at manufacturing scale. A stable operation was achieved as TMP was successfully reduced by 75% while preserving all critical factors for performance in the perfusion bioreactor. 相似文献
17.
Fernanda Cunha Jessica Zuponcic Francesco Rossi Grant Springer Eduardo Ximenes Norvin Bruns John F. Moomaw Brian D. Bowes Ken K. Qian Zhao Yu Dennis Yang Vincent J. Corvari Arezoo Ardekani Gintaras Reklaitis Michael Ladisch 《Biotechnology progress》2024,40(1):e3389
Tangential flow filtration (TFF) through a 30 kDa nominal molecular weight cut-off (MWCO) ultrafiltration membrane is widely employed to concentrate purified monoclonal antibodies (mAbs) to levels required for their formulation into injectable biologics. While TFF has been used to remove casein from milk for cheese production for over 35 years, and in pharmaceutical manufacture of biotherapeutic proteins for 20 years, the rapid decline in filtration rate (i.e., flux) at high protein concentrations is a limitation that still needs to be addressed. This is particularly important for mAbs, many of which are 140–160 kDa immunoglobulin G (IgG) type proteins recovered at concentrations of 200 mg/mL or higher. This work reports the direct measurement of local transmembrane pressure drops and off-line confocal imaging of protein accumulation in stagnant regions on the surface of a 30 kDa regenerated cellulose membrane in a flat-sheet configuration widely used in manufacture of biotherapeutic proteins. These first-of-a-kind measurements using 150 kDa bovine IgG show that while axial pressure decreases by 58 psi across a process membrane cassette, the decrease in transmembrane pressure drop is constant at about 1.2 psi/cm along the 20.7 cm length of the membrane. Confocal laser scanning microscopy of the membrane surface at the completion of runs where retentate protein concentration exceeds 200 mg/mL, shows a 50 μm thick protein layer is uniformly deposited. The localized measurements made possible by the modified membrane system confirm the role of protein deposition on limiting ultrafiltration rate and indicate possible targets for improving membrane performance. 相似文献
18.
Although several compelling benefits for bioprocess intensification have been reported, the need for a streamlined integration of perfusion cultures with capture chromatography still remains unmet. Here, a robust solution is established by conducting tangential flow filtration-based perfusion with a wide-surface pore microfiltration membrane. The resulting integrated continuous bioprocess demonstrated negligible retention of antibody, DNA, and host cell proteins in the bioreactor with average sieving coefficients of 98 ± 1%, 124 ± 28%, and 109 ± 27%, respectively. Further discussion regarding the potential membrane fouling mechanisms is also provided by comparing two membranes with different surface pore structures and the same hollow fiber length, total membrane area, and chemistry. A cake-growth profile is reported for the narrower surface pore, 0.65-µm nominal retention perfusion membrane with final antibody sieving coefficients ≤70%. Whereas the sieving coefficient remained ≥85% during 40 culture days for the wide-surface pore, 0.2-µm nominal retention rating membrane. The wide-surface pore structure, confirmed by scanning electron microscopy imaging, minimizes the formation of biomass deposits on the membrane surface and drastically improves product sieving. This study not only offers a robust alternative for integrated continuous bioprocess by eliminating additional filtration steps while overcoming sieving decay, but also provides insight into membranes' fouling mechanism. 相似文献
19.
High-performance tangential flow filtration (HPTFF) is shown to successfully enable concentration, purification and formulation in a single unit operation. This is illustrated with feedstreams comprising recombinant proteins expressed in Escherichia coli (E. coli). Using positively charged cellulosic membranes of 100 kDa molecular weight cut-off and operating under a selected range of buffer pH and ionic strength at a filtrate flux of 100 L m(-2) h(-1), a 10-fold removal of E. coli host cell proteins (HCP) was obtained with an overall process yield of 98%. The HPTFF performance was shown to be robust and reproducible. In addition, the novel charged membrane was regenerated and re-used seven times without loss of selectivity or throughput. When compared with a conventional purification scheme, the proposed process results in the elimination of one chromatographic step, a 12% yield improvement and a significant reduction in purification cost of goods. 相似文献
20.
In this study, we investigated the effects of alternating tangential flow (ATF) cell separation on high-density perfusion cultures. We have developed methods to estimate theoretical residence times of cells in the ATF system and discovered that long residence times (above 75 s) correlate with decreased growth, metabolism, and productivity. We have calculated energy dissipation rates in the ATF transfer line and filter and empirically studied the impacts of increased exchange rates on cell culture, determining that increased hydrodynamic stress can lead to decreased cell size, lactate production, and specific productivity. Finally, we have conducted experiments to understand the relationship between filtration fluxes and ATF membrane fouling, finding that at fluxes above 60 L·m–2·day –1, protein sieving coefficients see significant rates of decrease (greater than 1% per day). While most of these studies have been conducted with one cell line at one target viable cell density (40 million cells/ml), the general, directional knowledge arising from this study should be applicable to other conditions and programs, ultimately leading to more robust and well-designed perfusion processes. 相似文献