首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《动物学研究》2017,(6):317-320
Artemisinin resistance in Plasmodium falciparum threatens the remarkable efficacy of artemisininbased combination therapies worldwide.Thus,greater insight into the resistance mechanism using monitoring tools is essential.The ring-stage survival assay is used for phenotyping artemisinin-resistance or decreased artemisinin sensitivity.Here,we review the progress of this measurement assay and explore its limitations and potential applications.  相似文献   

3.
The spatial variation of Wuchereria bancrofti and Plasmodium falciparum infection densities was measured in a rural area of Papua New Guinea where they share anopheline vectors. The spatial correlation of W. bancrofti was found to reduce by half over an estimated distance of 1.7 km, much smaller than the 50 km grid used by the World Health Organization rapid mapping method. For P. falciparum, negligible spatial correlation was found. After mass treatment with anti-filarial drugs, there was negligible correlation between the changes in the densities of the two parasites.  相似文献   

4.
5.
6.
Plasmodium falciparum resistance to atovaquone-proguanil has so far been associated with Y268S or Y268N mutations in cytochrome b, although these changes were identified in only seven of the 11 treatment failures. Here, we describe 10 new cases of atovaquone-proguanil treatment failures among which the parasite resistance was confirmed in six cases, either by identifying correct plasma drug concentrations or by observing in vitro atovaquone resistance. Resistance was consistently associated with codon 268 mutations (Y268S or a previously unidentified mutation, Y268C). Notably, mutations were not detected before the treatment but only after the drug exposure.  相似文献   

7.
The merozoite surface protein 2 (MSP2) is a leading asexual-stage malaria vaccine candidate that has already proven to have an effect in phase I/IIb vaccine trials, where it was tested in combination with other antigens. Alleles of msp2 fall within two major allelic families, 3D7 and FC27. We analyzed the msp2 genotype in 306 asymptomatic and 63 symptomatic infections from the Wosera region of Papua New Guinea. The multiplicity of infection and the distribution of msp2 alleles was similar to that found in previous studies in the region, but there was no association found between FC27-type or 3D7-type forms of MSP2 and clinical malaria.  相似文献   

8.
Considerable antigenic heterogeneity of Plasmodium falciparum has been demonstrated in natural parasite populations. However, very little is known about the relative virulence, transmission efficiency and prevalence over space and time of parasites expressing different serotypes of variant antigens. The recent application of recombinant DNA techniques to express a wide range of P. falciparum antigens in Escherichia coli has led to a better understanding of the molecular basis of antigenic diversity of a number of parasite proteins including the precursor to the major merozoite surface antigen (PMMSA) and the heat-stable S-antigens. Highly specific reagents such as DNA probes, monoclonal antibodies and polyclonal antisera to either cloned antigens or synthetic peptides have become available for serotypic analysis of natural parasite populations. With these reagents important epidemiological questions can now be asked concerning the population biology of different serotypes of P. falciparum. The use of the polymorphic S-antigen system as a serotypic marker to analyse the transmission dynamics of P. falciparum in Madang, Papua New Guinea (PNG) is discussed. Results of serotyping studies with the S-antigen system highlight the complexities of malaria transmission, which require consideration in the design of malaria vaccine trials.  相似文献   

9.
Microsatellite loci are generally assumed to evolve via a stepwise mutational process and a battery of statistical techniques has been developed in recent years based on this or related mutation models. It is therefore important to investigate the appropriateness of these models in a wide variety of taxa. We used two approaches to examine mutation patterns in the malaria parasite Plasmodium falciparum: (i) we examined sequence variation at 12 tri-nucleotide repeat loci; and (ii) we analysed patterns of repeat structure and heterozygosity at 114 loci using data from 12 laboratory parasite lines. The sequencing study revealed complex patterns of mutation in five of the 12 loci studied. Alleles at two loci contain indels of 24 bp and 57 bp in flanking regions, while in the other three loci, blocks of imperfect microsatellites appear to be duplicated or inserted; these loci essentially consist of minisatellite repeats, with each repeat unit containing four to eight microsatellites. The survey of heterozygosity revealed a positive relationship between repeat number and microsatellite variability for both di- and trinucleotides, indicating a higher mutation rate in loci with longer repeat arrays. Comparisons of levels of variation in different repeat types indicate that the mutation rate of dinucleotide-bearing loci is 1.6-2.1 times faster than trinucleotides, consistent with the lower mean number of repeats in trinucleotide-bearing loci. However, despite the evidence that microsatellite arrays themselves are evolving in a manner consistent with stepwise mutation model in P. falciparum, the high frequency of complex mutations precludes the use of analytical tools based on this mutation model for many microsatellite-bearing loci in this protozoan. The results call into question the generality of models based on stepwise mutation for analysing microsatellite data, but also demonstrate the ease with which loci that violate model assumptions can be detected using minimal sequencing effort.  相似文献   

10.
11.
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.  相似文献   

12.
Until recently, little light had been shed on the murky origins of human malaria. Did Plasmodium falciparum, the most virulent malaria parasite, emerge as a common pathogen only in the past few thousand years, as suggested by some analyses of its nucleotide sequence diversity? Or, was it an ancient scourge of early humans >100 000 years ago, as suggested by others? A recent study, using complete mitochondrial DNA sequence polymorphism data and new analytical methods, points to an intermediate date of origin and expansion out of Africa. Subsequent population growth in each continent is less well resolved.  相似文献   

13.
The immunosuppressant FK506 binds Plasmodium falciparum FK-506 binding protein 35 (PfFKBP35) and shows anti-malarial activity. To understand molecular mechanism of the drug on the parasite, we have done NMR studies. Here, we report the assignment of FK506-binding domain of PfFKBP35.  相似文献   

14.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

15.
We report the presence of SNPs in Plasmodium falciparum K13-propeller gene in two African countries, Angola and Mozambique, where malaria is a serious public health problem. Samples were collected before and after ACT introduction as first-line treatment. In each country 50 samples collected before and 50 after ACT introduction were analysed. A total of three different mutations (R471R and R575R in Angola and V494I in Mozambique) were identified in five samples, all collected after the introduction of ACT. The R471R mutation detected in Angola has already been reported in Africa (DR-Congo and Gabon). However, the mutations R575R (Angola) and V494I (Mozambique), have never been reported. V494I is adjacent to the known K13 resistance-associated mutation Y493H, although functional analysis did not predict a deleterious effect on protein function.  相似文献   

16.
17.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

18.
Increase in drug detoxification and alteration of drug uptake and efflux of Plasmodium falciparum were investigated for their possible association with mefloquine (MQ) resistance in five different clones of P. falciparum from Thailand (T994b3, K1CB2, PR70CB1, PR71CB2 and TM4CB8-2.2.3). Fifty percent inhibitory concentration (IC50) values from these five clones varied between 30- and 50-fold. Regarding the detoxification mechanism, the ability of P. falciparum clones to biotransform MQ was shown in vitro by parasite microsomal protein prepared from parasite infected red blood cells protein (30 μg), NADPH (1 nM) and phosphate buffer pH 7.4, carried out at 37 °C with agitation. Radiolabelled unmetabolized MQ and possible metabolite(s) generated from the reaction was extracted into ethylacetate and separated by radiometric-HPLC after 1 h. All clones were capable of converting MQ into carboxymefloquine (CMQ), which is the main metabolite in human plasma. In addition, another unidentified metabolite eluted at 4.2 min on the chromatograph could be detected from the incubation reaction. This metabolite has never been detected in human liver microsomes before. There was no significant difference in the percentages of CMQ formed in the resistant (T994b3, PR70CB1, PR71CB2) and sensitive (TM4CB8-2.2.3, K1CB2) clones. Another possible mechanism, i.e., alteration in the accumulation of MQ in the parasites was investigated in vitro using [14C]MQ as a tracer. The time courses of [14C]MQ uptake and efflux were generally characterized by two phases. A trend of increased efflux of [14C]MQ was observed in the resistant compared with sensitive clones.  相似文献   

19.
Atovaquone is an antimalarial agent that specifically inhibits the cytochrome bc(1) complex of the cytochrome pathway. High-level atovaquone resistance is associated with a point mutation in the cytochrome b gene. A pair of isogenic clinical isolates of Plasmodium falciparum derived from before and after the acquisition of atovaquone resistance was used to determine whether the change in the cytochrome b gene resulted in changes in respiration in response to atovaquone. Since P. falciparum appears to utilize a branched respiratory system comprising both the cytochrome and an alternative respiratory pathway, the proportion of each pathway utilized by the sensitive and resistant parasites was investigated. Atovaquone inhibited total parasite oxygen consumption by up to 66% in the sensitive isolate but only up to 28% in the resistant isolate. Both the atovaquone-sensitive and the atovaquone-resistant parasites were comparably sensitive to the alternative pathway inhibitor, salicylhydroxamic acid. Atovaquone appeared to partially inhibit the rate of oxygen consumed through the alternative pathway in only the atovaquone-sensitive isolate. Cross resistance was noted between atovaquone and a new antimalarial agent WR243251. However, the level of WR243251 resistance was very modest compared to the level of atovaquone resistance. WR243251 was shown to rapidly reduce the rate of parasite oxygen consumption by almost 80% in the atovaquone-sensitive isolate and by 57% in the atovaquone-resistant isolate. Drug interaction studies suggest that atovaquone and WR243251 may inhibit growth additively or with mild synergy. Together, these results suggest that while WR243251 may inhibit respiration, its target of action probably differs from that of atovaquone.  相似文献   

20.
Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte‐binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba‐140, eba‐175, eba‐181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba‐140 seemed to be under stronger diversifying selection in South America than eba‐175. In contrast, eba‐181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号