首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.  相似文献   

2.
3.
Son M  Park I  Lee OH  Rhee I  Park C  Yun Y 《Molecules and cells》2012,33(4):407-414
Lck Interacting Membrane protein (LIME) was previously characterized as a transmembrane adaptor protein mediating TCR-dependent T cell activation. Here, we show that LIME associates with Vav in response to TCR stimulation and is required for Vav guanine nucleotide exchange factor (GEF) activity for Rac1. Consistent with this finding, actin polymerization at the immunological synapse (IS) was markedly enhanced by overexpression of LIME, but was reduced by expression of a LIME shRNA. Moreover, TCR-mediated cell adhesion to ICAM-1, laminin, or fibronectin was downregulated by expression of LIME shRNA. In addition, in the IS, LIME but not LAT was found to localize at the peripheral-supramolecular activation cluster (p-SMAC) where the integrins were previously shown to be localized. Together, these results establish LIME as a transmembrane adaptor protein linking TCR stimulation to IS formation and integrin activation through activation of Vav.  相似文献   

4.
Stimulation of mature T cells activates a downstream signaling cascade involving temporally and spatially regulated phosphorylation and dephosphorylation events mediated by protein-tyrosine kinases and phosphatases, respectively. PTPN22 (Lyp), a non-receptor protein-tyrosine phosphatase, is expressed exclusively in cells of hematopoietic origin, notably in T cells where it represses signaling through the T cell receptor. We used substrate trapping coupled with mass spectrometry-based peptide identification in an unbiased approach to identify physiological substrates of PTPN22. Several potential substrates were identified in lysates from pervanadate-stimulated Jurkat cells using PTPN22-D195A/C227S, an optimized substrate trap mutant of PTPN22. These included three novel PTPN22 substrates (Vav, CD3epsilon, and valosin containing protein) and two known substrates of PEP, the mouse homolog of PTPN22 (Lck and Zap70). T cell antigen receptor (TCR) zeta was also identified as a potential substrate in Jurkat lysates by direct immunoblotting. In vitro experiments with purified recombinant proteins demonstrated that PTPN22-D195A/C227S interacted directly with activated Lck, Zap70, and TCRzeta, confirming the initial substrate trap results. Native PTPN22 dephosphorylated Lck and Zap70 at their activating tyrosine residues Tyr-394 and Tyr-493, respectively, but not at the regulatory tyrosines Tyr-505 (Lck) or Tyr-319 (Zap70). Native PTPN22 also dephosphorylated TCRzeta in vitro and in cells, and its substrate trap variant co-immunoprecipitated with TCRzeta when both were coexpressed in 293T cells, establishing TCRzeta as a direct substrate of PTPN22.  相似文献   

5.
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related serine/threonine protein kinase, is a hematopoietic-specific upstream activator of the c-Jun N-terminal kinase. Here, we provide evidence to demonstrate the involvement of HPK1 in T cell receptor (TCR) signaling. HPK1 was activated and tyrosine-phosphorylated with similar kinetics following TCR/CD3 or pervanadate stimulation. Co-expression of protein-tyrosine kinases, Lck and Zap70, with HPK1 led to HPK1 activation and tyrosine phosphorylation in transfected mammalian cells. Upon TCR/CD3 stimulation, HPK1 formed inducible complexes with the adapters Nck and Crk with different kinetics, whereas it constitutively interacted with the adapters Grb2 and CrkL in Jurkat T cells. Interestingly, HPK1 also inducibly associated with linker for activation of T cells (LAT) through its proline-rich motif and translocated into glycolipid-enriched microdomains (also called lipid rafts) following TCR/CD3 stimulation, suggesting a critical role for LAT in the regulation of HPK1. Together, these results identify HPK1 as a new component of TCR signaling. T cell-specific signaling molecules Lck, Zap70, and LAT play roles in the regulation of HPK1 during TCR signaling. Differential complex formation between HPK1 and adapters highlights the possible involvement of HPK1 in multiple signaling pathways in T cells.  相似文献   

6.
Dong S  Corre B  Nika K  Pellegrini S  Michel F 《PloS one》2010,5(11):e15114

Background

One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/Principal Findings

We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement.

Conclusions/Significance

Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.  相似文献   

7.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

8.
9.
10.
Antigenic stimulation of the T-cell antigen receptor initiates signal transduction through the immunoreceptor tyrosine-based activation motifs (ITAMs). When its two tyrosines are phosphorylated, ITAM forms a binding site for ZAP-70, one of the cytoplasmic protein tyrosine kinases essential for T-cell activation. The signaling process that follows ZAP-70 binding to ITAM has been analyzed by the construction of fusion proteins that localize ZAP-70 to the plasma membrane. We found that membrane-localized forms of ZAP-70 induce late signaling events such as activation of nuclear factor of activated T cells without any stimulation. This activity was observed only when Lck was expressed and functional. In addition, each mutation that affects the function of Lck in the kinase, Src homology 2 (SH2), and SH3 domains greatly impaired the signaling ability of the chimeric protein. Therefore, Lck functions in multiple manners in T-cell activation for the steps following ZAP-70 binding to ITAM.  相似文献   

11.
CD43 is an abundant cell surface sialoglycoprotein implicated in hemopoietic cell adhesion and activation. Cell stimulation through CD43 results in recruitment of different signaling proteins, including members of the Src family kinases, Syk, phospholipase Cgamma2, the adapter protein Shc, the guanine nucleotide exchange factor Vav, and activation of protein kinase C. In this study, we report that in human T lymphocytes, the zeta-chain is part of the CD43 signaling pathway. Upon CD43 engagement, the zeta-chain was tyrosine-phosphorylated, generating docking sites for tyrosine-phosphorylated zeta-associated protein of 70 kDa and Vav. In vitro kinase assays suggested that zeta-associated protein of 70 kDa could account for the kinase activity associated with the zeta-chain following CD43 engagement. Cross-linking CD43 on the surface of the Lck-deficient JCaM.1 cells failed to phosphorylate the zeta-chain and associated proteins, suggesting that Lck is a key element in the CD43 signaling pathway leading to zeta phosphorylation. CD43 engagement with beads coated with anti-CD43 mAb resulted in concentration of the zeta-chain toward the bead attachment site, but interestingly, the distribution of the T cell Ag receptor complex remained unaffected. Recruitment of the zeta-chain through CD43-mediated signals was not restricted to T lymphocytes because phosphorylation and redistribution of the zeta-chain was also observed in NK cells. Our results provide evidence that the zeta-chain functions as a scaffold molecule in the CD43 signaling pathway, favoring the recruitment and formation of downstream signaling complexes involved in the CD43-mediated cell activation of T lymphocytes and other leukocytes such as NK cells.  相似文献   

12.
The Rho family GTPases are pivotal for T cell signaling; however, the regulation of these proteins is not fully known. One well studied regulator of Rho GTPases is Vav1; a hematopoietic cell-specific guanine nucleotide exchange factor critical for signaling in T cells, including stimulation of the nuclear factor of activated T cells (NFAT). Surprisingly, Vav1 associates with Ly-GDI, a hematopoietic cell-specific guanine nucleotide dissociation inhibitor of Rac. Here, we studied the functional significance of the interaction between Vav1 and Ly-GDI in T cells. Upon organization of the immunological synapse, both Ly-GDI and Vav1 relocalize to T cell extensions in contact with the antigen-presenting cell. Ly-GDI is phosphorylated on tyrosine residues following T cell receptor stimulation, and it associates with the Src homology 2 region of an adapter protein, Shc. In addition, the interaction between Ly-GDI and Vav1 requires tyrosine phosphorylation. Overexpression of Ly-GDI alone is inhibitory to NFAT stimulation and calcium mobilization. However, when co-expressed with Vav1, Ly-GDI enhances Vav1 induction of NFAT activation, phospholipase Cgamma phosphorylation, and calcium mobilization. Moreover, Ly-GDI does not alter the regulation of these phenomena when coexpressed with oncogenic Vav1. Since oncogenic Vav1 does not bind Ly-GDI, this suggests that the functional cooperativity of Ly-GDI and Vav1 is dependent upon their association. Thus, our data suggest that the interaction of Vav1 and Ly-GDI creates a fine tuning mechanism for the regulation of intracellular signaling pathways leading to NFAT stimulation.  相似文献   

13.
The phosphorylation and dephosphorylation of proteins on tyrosyl residues are key regulatory mechanisms in T-cell signal transduction and are controlled by the opposing activities of protein tyrosine kinases and phosphotyrosyl phosphatases (PTPs). In T cells, several nontransmembrane protein tyrosine kinases are associated with receptors; for example, Lck is bound to the coreceptors CD4 and CD8 and becomes activated upon their stimulation. In comparison, little is known about the role of nontransmembrane PTPs in early T-cell signaling. SH-PTP1 (PTP1C, HCP, SHP) is a nontransmembrane PTP expressed primarily in hematopoietic cells, including T cells. We have found that SH-PTP1 is basally phosphorylated on serine in resting T cells. Upon stimulation of CD4 or CD8 either in a T-cell hybridoma cell line or in primary thymocytes, SH-PTP1 becomes tyrosyl phosphorylated. Moreover, SH-PTP1 is constitutively phosphorylated on tyrosine in the Lck-overexpressing lymphoma cell line LSTRA. SH-PTP1 is also a good substrate for recombinant Lck in vitro. Comparisons of the tryptic phosphopeptide maps of wild-type SH-PTP1 and deletion and point mutations establish that the two sites (Y-536 and Y-564) which are directly phosphorylated by Lck in vitro are also phosphorylated in vivo in LSTRA cells. One of these sites (Y-564) is phosphorylated in T cells in response to Lck activation. We conclude that SH-PTP1 undergoes Lck-dependent tyrosyl phosphorylation in T cells and likely plays a role in early T-cell signaling.  相似文献   

14.
This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.  相似文献   

15.
The biological effects of rIgG(1) 13B8.2, directed against the CDR3-like loop on the D1 domain of CD4, are partly due to signals that prevent NF-kappaB nuclear translocation, but the precise mechanisms of action, particularly at the level of membrane proximal signaling, remain obscure. We support the hypothesis that rIgG(1) 13B8.2 acts by interfering with the spatiotemporal distribution of signaling or receptor molecules inside membrane rafts. Upon cross-linking of Jurkat T lymphocytes, rIgG(1) 13B8.2 was found to induce an accumulation/retention of the CD4 molecule inside polyoxyethylene-20 ether Brij 98 detergent-resistant membranes at 37 degrees C, together with recruitment of TCR, CD3zeta, p56 Lck, Lyn, and Syk p70 kinases, linker for activation of T cells, and Csk-binding protein/phosphoprotein associated with glycosphingolipid adaptor proteins, and protein kinase Ctheta, but excluded Zap70 and its downstream targets Src homology 2-domain-containing leukocyte protein of 76 kDa, phospholipase Cgamma1, and p95(vav). Analysis of key upstream events such as Zap70 phosphorylation showed that modulation of Tyr(292) and Tyr(319) phosphorylation occurred concomitantly with 13B8.2-induced Zap70 exclusion from the membrane rafts. 13B8.2-induced differential raft partitioning was epitope, cholesterol, and actin dependent but did not require Ab hyper-cross-linking. Fluorescence confocal imaging confirmed the spatiotemporal segregation of the CD4 complex inside rafts and concomitant Zap70 exclusion, which occurred within 10-30 s following rIgG(1) 13B8.2 ligation, reached a plateau at 1 min, and persisted until the end of the 1-h experiment. The differential spatiotemporal partitioning between the CD4 receptor and the Zap70-signaling kinase inside membrane rafts interrupts the proximal signal cross-talk leading to subsequent NF-kappaB nuclear translocation and explains how baculovirus-expressed CD4-CDR3-like-specific rIgG(1) 13B8.2 acts to induce its biological effects.  相似文献   

16.
Lad was previously identified as an adaptor protein binding to the SH2 domain of Lck (1). Specific detection of Lad mRNA in lung cells, as well as, in T cells led us to investigate the signaling pathways regulating Lad in lung cells. We found that (i) upon PDGF stimulation, Lad expression is induced in lung cells, especially in the bronchial epithelial cells; (ii) Lad is tyrosine phosphorylated upon PDGF stimulation and is associated with PDGF receptor; (iii) upon PDGF stimulation, Grb2 is recruited to Lad in human embryonic lung cells; (iv) overexpression of Lad elevated AP-1 promoter activity by two- to threefold, whereas dominant negative Lad abrogated PDGF-dependent activation of AP-1 promoter. These results provide a novel mechanism of PDGF-dependent signaling, in which Lad acts as an adaptor in a tissue-specific manner, linking PDGF signal to Grb2 and subsequent activation of AP-1.  相似文献   

17.
Chiang J  Hodes RJ 《PloS one》2011,6(4):e18542
Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.  相似文献   

18.
To maintain various T cell responses and immune equilibrium, activation signals triggered by T cell antigen receptor (TCR) must be regulated by inhibitory signals. Gab2, an adaptor protein of the insulin receptor substrate-1 family, has been shown to be involved in the downstream signaling from cytokine receptors. We investigated the functional role of Gab2 in TCR-mediated signal transduction. Gab2 was phosphorylated by ZAP-70 and co-precipitated with phosphoproteins, such as ZAP-70, LAT, and CD3zeta, upon TCR stimulation. Overexpression of Gab2 in Jurkat cells or antigen-specific T cell hybridomas resulted in the inhibition of NF-AT activation, interleukin-2 production, and tyrosine phosphorylation. The structure-function relationship of Gab2 was analyzed by mutants of Gab2. The Gab2 mutants lacking SHP-2-binding sites mostly abrogated the inhibitory activity of Gab2, but its inhibitory function was restored by fusing to active SHP-2 as a chimeric protein. A mutant with defective phosphatidylinositol 3-kinase binding capacity also impaired the inhibitory activity, and the pleckstrin homology domain-deletion mutant revealed a crucial function of the pleckstrin homology domain for localization to the plasma membrane. These results suggest that Gab2 is a substrate of ZAP-70 and functions as a switch molecule toward inhibition of TCR signal transduction by mediating the recruitment of inhibitory molecules to the TCR signaling complex.  相似文献   

19.
20.
The NK cell-activating receptor NKG2D recognizes several MHC class I-related molecules expressed on virally infected and tumor cells. Human NKG2D transduces activation signals exclusively via an associated DAP10 adaptor containing a YxNM motif, whereas murine NKG2D can signal through either DAP10 or the DAP12 adaptor, which contains an ITAM sequence. DAP10 signaling is thought to be mediated, at least in part, by PI3K and is independent of Syk/Zap-70 kinases; however, the exact mechanism by which DAP10 induces natural cytotoxicity is incompletely understood. Herein, we identify Vav1, a Rho GTPase guanine nucleotide exchange factor, as a critical signaling mediator downstream of DAP10 in NK cells. Specifically, using mice deficient in Vav1 and DAP12, we demonstrate an essential role for Vav1 in DAP10-induced NK cell cytoskeletal polarization involving both actin and microtubule networks, maturation of the cytolytic synapse, and target cell lysis. Mechanistically, we show that Vav1 interacts with DAP10 YxNM motifs through the adaptor protein Grb2 and is required for activation of PI3K-dependent Akt signaling. Based on these findings, we propose a novel model of ITAM-independent signaling by Vav downstream of DAP10 in NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号