首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Du J  Xu R  Hu Z  Tian Y  Zhu Y  Gu L  Zhou L 《PloS one》2011,6(9):e25213

Background

Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.

Methodology/Principal Findings

In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.

Conclusions/Significance

Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.  相似文献   

7.
Migration toward pathological area is the first critical step in microglia engagement during the central nervous system (CNS) injury, although the molecular mechanisms underlying microglia mobilization have not been fully understood. Here, we report that hypoxia promotes stromal cell-derived factor-1α (SDF-1α) induced microglia migration by inducing the CXC chemokine receptor 4 (CXCR4) expression. Exposure to hypoxia significantly enhanced CXCR4 expression levels in N9 microglia cell. Then, cell migration induced by SDF-1, a CXCR4-specific ligand, was observed accelerated. Blockade of hypoxia inducible factor-1α (HIF-1α) activation by inhibitors of phosphoinositide-3-kinase (PI3K)/Akt signaling pathway abrogated both of hypoxia-induced CXCR4 up-regulation and cell-migration acceleration. These results point to a crucial role of Hypoxia-HIF-1α-CXCR4 pathway during microglia migration.  相似文献   

8.
To investigate the effect of JAKs-STATs signal pathway on expression of S100A4 in pulmonary arterial smooth muscle cells (PASMCs), the action of S100A4 and hypoxia induced factor 1 (HIF-1) on the proliferation of hypoxic PASMCs. The results showed that S100A4 immunostaining was localized in the cytoplasm and nuclei of PASMCs exposure to hypoxia and it was predominantly expressed in rhomboid cells (R-SMCs). The mRNA and protein levels of S100A4 expression increased in PASMCs after hypoxic stimulus for 4, 8, 16 h. The immunofluorescence intensity and protein levels of S100A4 were suppressed, and the number of R-SMCs was reduced, when pretreatment with HIF-1α siRNA, STAT3 siRNA, S100A4 siRNA, and S100A4 inhibitor NSC 95397. Pretreatment with HIF-1α siRNA and anti-IL-6 antibodies, the levels of phospho-JAK2, -STAT3, and S100A4 were decreased, while HIF-1α kept stable in hypoxic cells. Importantly, pretreatment with HIF-1α siRNA, anti-IL-6 antibodies, STAT3 siRNA, and S100A4 siRNA, significantly attenuated the proliferation of PASMCs exposure to hypoxia. These data demonstrate that S100A4 is predominantly expressed in hypoxic R-SMCs, and regulated by the activation of JAK2-STAT3 signal pathway, which is dependent on hypoxia-induced HIF-1α expression. These results suggest that JAK2-STAT3 and HIF-1α could serve as targets for the regulation of phenotype modulation of PASMCs during the process of pulmonary vessel lesions.  相似文献   

9.
10.
11.
12.
Stem cell functions are dramatically altered by oxygen in tissue culture, which means the antioxidant/oxidant balance is critical for protection as well as toxicity. This study examined the effect of the heparin-binding growth factor midkine (MK) on hypoxia-induced apoptosis and related signal pathways in mouse embryonic stem cells (mESCs). Hypoxia (60 h) increased lactate dehydrogenase release and apoptosis, and reduced cell viability and proliferation. These effects were reversed by MK (100 ng/ml). MK also reversed hypoxia-induced increases of intracellular reactive oxygen species, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Blockage of JNK and p38 MAPK using small interference (si)RNAs produced a decrease in apoptosis. A loss of mitochondrial membrane potential, increases of cytochrome c release from mitochondria to cytosol, and cleaved caspase-3 expression, as well as decreases in cIAP-2 and Bcl-2 were also reversed by MK. Hypoxia alone and hypoxia with MK increased low-density lipoprotein receptor-related protein-1 (LRP-1) mRNA and protein expression. Hypoxia with MK rapidly increased serine/threonine protein kinase (Akt) phosphorylation which reversed by LRP-1 Ab (0.1 μg/ml) and prolonged heme oxygenase-1 (HO-1) expression. In addition, hypoxia with MK increased the expression of hypoxia-inducible factor-1α (HIF-1α). Moreover, inhibition of Akt, HO-1, and HIF-1α signaling pathways abolished the MK-induced blockage of apoptosis. In conclusion, MK partially prevented hypoxic injury of mESCs through activation of Akt, HO-1, and HIF-1α via LRP-1.  相似文献   

13.
14.
15.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

16.
17.
Hypoxia can cause severe tubulointerstitial injury and peritubular capillary loss. However, hypoxia-induced injury in glomerular capillaries is far milder than tubulointerstitium, but the reason for this difference is unclear. We hypothesized that the phenomenon is due to the protective crosstalk among intrinsic glomerular cells. To mimic the microenvironment and investigate the crosstalk process temporally, we established co-culture models of glomerular endothelial cells (GEnCs) with podocytes or with mesangial cells. We found that podocytes rather than mesangial cells prevented GEnCs from injury and hypoxia-induced apoptosis and promoted migration and angiogenesis of GEnCs under hypoxic conditions. We then identified that increased activation of the hypoxia inducible factor 1α (HIF-1α) pathway as the major mechanism enabling podocytes to protect GEnCs against hypoxia. HIF-1α stabilization during hypoxia is known to be dependent on SUMO-specific protease 1 (SENP1)-mediated deSUMOylate modifications. Therefore, we further targeted deSUMOylation, regulated by SENP1, by short hairpin RNA (shRNA) knockdown of SENP1 mRNA in vitro and measured expression of HIF-1α and its downstream gene VEGF in hypoxic podocytes. Our results showed that SENP1 was essential for HIF-1α deSUMOylation in podocytes. The blockade of deSUMOylation by SENP1 shRNA successfully abolished the activation of HIF-1α signaling and consequently suppressed the protective effects of podocytes on GEnCs. In conclusion, we demonstrate for the first time that hypoxia may promote HIF-1α stabilization and activation by increasing SENP1 expression in podocytes, which induce GEnCs survival and angiogenesis to resist hypoxia. Thus, deSUMOylation of HIF-1α signaling is a potentially novel therapeutic target for treating hypoxic renal disorders.  相似文献   

18.
将表达野生型缺氧诱导因子-1α (hypoxia inducible factor-1 α, HIF-1α)的重组质粒pcDNA3.1-full length HIF-1α,表达抑制型HIF-1α的重组质粒pcDNA3.1-dominant negative HIF-1α和空质粒pcDNA3.1稳定转染人宫颈癌SiHa细胞,研究HIF-1α对人宫颈癌SiHa细胞生物学行为的影响.采用免疫细胞化学法和Western 印迹检测HIF-1α与VEGF蛋白的表达;CoCl2化学缺氧法处理细胞,采用原位缺口末端标记(TUNEL)法检测细胞凋亡情况.结果显示,显性失活HIF-1α能下调VEGF蛋白的表达,促进细胞缺氧条件下的凋亡,这提示HIF-1α可能在宫颈癌的发生发展中起作用,利用显性失活HIF-1α转染抑制HIF-1α可望成为宫颈癌治疗基因治疗的又一新途径.  相似文献   

19.
20.
β cells suffer from hypoxia due to the rapid metabolic rate to supply insulin production. Mechanistic study of β cell survival under hypoxia may shed light on the β cell mass loss in type 2 diabetes mellitus (T2DM). Here, we found that the expressions of LC3 and p62/SQSTM1, two key autophagy regulators, were significantly higher in β cells than that in non-β endocrine cells in both non-diabetic and T2DM human pancreases, and the autophagy process was accelerated upon Cobalt Chloride (CoCl2) treatment in ex vivo cultured primary human islets. Meanwhile, CoCl2 induced the upregulation of FOXO1 in human islets, where HIF-1α played a key role. CoCl2 treatment caused the increase of β cell apoptosis, yet inhibiting autophagy by Chloroquine or by FOXO1 knockdown further aggravated apoptosis, suggesting that FOXO1-regulated autophagy is protective for β cell survival under hypoxia. Immunofluorescence staining showed that LC3 and p62/SQSTM1 expressions were significantly decreased in T2DM patients and negatively correlated with HbA1c, indicating that the autophagy capacity of β cells is impaired along with the progression of the disease. Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM.Brief summaryOur study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号