首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the modulation of human B cell chemotaxis by the gp120 proteins of various HIV-1 strains. X4 and X4/R5 gp120 inhibited B cell chemotaxis toward CXCL12, CCL20, and CCL21 by 40-50%, whereas R5 gp120 decreased inhibition by 20%. This gp120-induced inhibition was strictly dependent on CXCR4 or CCR5 and lipid rafts but not on CD4 or V(H)3-expressing BCR. Inhibition did not impair the expression or ligand-induced internalization of CCR6 and CCR7. Our data suggest that gp120/CXCR4 and gp120/CCR5 interactions lead to the cross-desensitization of CCR6 and CCR7 because gp120 does not bind CCR6 and CCR7. Unlike CXCL12, gp120 did not induce the activation of phospholipase Cbeta3 and PI3K downstream from CXCR4, whereas p38 MAPK activation was observed. Similar results were obtained if gp120-treated cells were triggered by CCL21 and CCL20. Our results are consistent with a blockade restricted to signaling pathways using phosphatidylinositol-4,5-bisphosphate as a substrate. X4 and X4/R5 gp120 induced the cleavage of CD62 ligand by a mechanism dependent on matrix metalloproteinase 1 and 3, CD4, CXCR4, Galpha(i), and p38 MAPK, whereas R5 gp120 did not. X4 and X4/R5 gp120 also induced the relocalization of cytoplasmic CD95 to the membrane and a 23% increase in CD95-mediated apoptosis. No such effects were observed with R5 gp120. The gp120-induced decrease in B cell chemotaxis and CD62 ligand expression, and increase in CD95-mediated B cell apoptosis probably have major deleterious effects on B cell responsiveness during HIV infection and in vaccination trials.  相似文献   

2.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

3.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

4.
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.  相似文献   

5.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

6.
Chemotaxis induction is a major effect evoked by stimulation of the chemokine receptor CXCR4 with its sole ligand CXCL12. We now report that treatment of CHP-100 human neuroepithelioma cells with the glucosylceramide synthase (GCS) inhibitor DL-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol inhibits CXCR4-dependent chemotaxis. We provide evidence that the phenomenon is not due to unspecific effects of the inhibitor employed and that inhibition of GCS neither affects total or plasmamembrane CXCR4 expression, nor CXCL12-induced Ca(2+) mobilization. The effects of the GCS inhibitor on impairment of CXCL12-induced cell migration temporally correlated with a pronounced downregulation of neutral glycosphingolipids, particularly glucosylceramide, and with a delayed and more moderate downregulation of gangliosides; moreover, exogenously administered glycosphingolipids allowed resumption of CXCR4-dependent chemotaxis. Altogether our results provide evidence, for the first time, for a role glycosphingolipids in sustaining CXCL12-induced cell migration.  相似文献   

7.

Background

Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce α−smooth muscle actin (α-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.

Methods and Findings

Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and α−SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and α−SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.

Conclusion

Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.  相似文献   

8.
Nephrogenic systemic fibrosis (NSF) is a fibrosing disorder disease developed in patients with underlying renal insufficiency following exposure to gadolinium-based contrast agents (GBCAs). Previous studies have demonstrated that GdCl3 can promote NIH3T3 fibroblast cell proliferation, which provide a new clue to the role of GBCAs in the development of NSF. In the present study, we further clarify the molecular mechanism of Gd-promoted proliferation. The results showed that intervention with the Rac inhibitor NSC23766 abrogated Gd-promoted proliferation. The levels of active Rac1 significantly increased in Gd-treated cells detected by pull-down assays. In addition, the phosphorylation of Akt was significantly elevated in the treatment group, which was blocked by NSC23766. NSC23766 also reduced the migration of NIH3T3 cells enhanced by Gd. Moreover, the F-actin cytoskeleton was strengthened and the mitotic cell numbers was significantly increased after exposure to Gd. These results suggest that Rac and PI3K/Akt signaling pathways, as well as integrin-mediated signal pathway may play important roles in Gd-induced cell proliferation. In addition, under serum-free condition, Gd could decrease ROS accumulation and increase NIH3T3 cell survival.  相似文献   

9.
The CXC subfamily of chemokines plays an important role in diverse processes, including inflammation, wound healing, growth regulation, angiogenesis, and tumorigenesis. The CXC chemokine CXCL1, or MGSA/GROalpha, is traditionally considered to be responsible for attracting leukocytes into sites of inflammation. To better understand the molecular mechanisms by which CXCL1 induces CXCR2-mediated chemotaxis, the signal transduction components involved in CXCL1-induced chemotaxis were examined. It is shown here that CXCL1 induces cdc42 and PAK1 activation in CXCR2-expressing HEK293 cells. Activation of the cdc42-PAK1 cascade is required for CXCL1-induced chemotaxis but not for CXCL1-induced intracellular Ca2+ mobilization. Moreover, CXCL1 activation of PAK1 is independent of ERK1/2 activation, a conclusion based on the observations that the inhibition of MEK-ERK activation by expression of dominant negative ERK or by the MEK inhibitor, PD98059, has no effect on CXCL1-induced PAK1 activation or CXCL1-induced chemotaxis.  相似文献   

10.
The extracellular protease plasmin cleaves mouse MCP1 (monocyte chemoattractant protein 1) at lysine 104, releasing a 50-amino acid C-terminal domain. The cleavage event increases the chemotactic activity of MCP1 and, by doing so, promotes the progression of excitotoxic injury in the central nervous system in pathological settings. The mechanism through which the cleavage event enhances MCP1-mediated chemoattraction is unknown; to investigate it, we use wild-type and mutant forms of recombinant MCP1. Full-length MCP1 (FL-MCP1) is secreted by cells as a dimer or multimer. We show that a mutant truncated at the C terminus, K104Stop-MCP1, does not dimerize, revealing that the C terminus mediates the interaction. MCP1 interacts with the monocyte/microglia receptor CCR2. The interaction is critical to the function of MCP1 because CCR2−/− microglia do not undergo chemotaxis in response to MCP1 stimulation. We show that stimulation of microglia with FL-MCP1 or K104Stop-MCP1 triggers CCR2 internalization, whereas a mutant form unable to be cleaved at lysine 104 (K104A-MCP1) is relatively ineffective in this assay, suggesting that the C-terminal region interferes with the MCP1-CCR2 interaction. Moreover, FL-MCP1 and K104Stop-MCP1 stimulation leads to activation of Rac1, a small GTPase involved in cell migration. Conversely, MCP1-stimulated microglial migration is blocked by the Rac1 inhibitor, NSC23766, demonstrating the requirement for Rac1 effector pathways in this response. Taken together, we propose a model for MCP1 localization, activation, and function based on the initial presence and then removal of its C terminus, coupled with a requisite downstream signaling pathway from CCR2 stimulation to Rac1 activation.  相似文献   

11.
Fibroblast-like synoviocytes (FLS) isolated from joints of rheumatoid arthritis (RA) patients display proliferative and invasive properties reminiscent of those of malignant tumor cells. Rac small GTPases play an important role in tumor cell proliferation and invasion. We therefore investigated the potential role of Rac proteins in the proliferative and invasive behavior of RA-FLS. We showed that inhibiting Rac activity with the Rac-specific small molecule inhibitor NSC23766 causes a strong inhibition of RA-FLS proliferation, without affecting cell survival. Rac inhibition also results in a strong reduction in RA-FLS invasion through reconstituted extracellular matrix and a less marked inhibition of two-dimensional migration as measured by monolayer wound healing. We also showed that small interfering RNA-mediated depletion of Rac1 inhibits RA-FLS proliferation and invasion to a similar extent as NSC23766. These results demonstrate for the first time that Rac proteins play an important role in the aggressive behavior of FLS isolated from RA patients. In addition, we observed that inhibiting Rac proteins prevents JNK activation and that the JNK inhibitor SP600125 strongly inhibits RA-FLS invasion, suggesting that Rac-mediated JNK activation contributes to the role of Rac proteins in the invasive behavior of RA-FLS. In conclusion, Rac-controlled signaling pathways may present a new source of drug targets for therapeutic intervention in RA.  相似文献   

12.
Barrier stabilizing effects of cAMP as well as of the small GTPase Rac 1 are well established. Moreover, it is generally believed that permeability‐increasing mediators such as thrombin disrupt endothelial barrier functions primarily via activation of Rho A. In this study, we provide evidence that decrease of both cAMP levels and of Rac 1 activity contribute to thrombin‐mediated barrier breakdown. Treatment of human dermal microvascular endothelial cells (HDMEC) with Rac 1‐inhibitor NSC‐23766 decreased transendothelial electrical resistance (TER) and caused intercellular gap formation. These effects were reversed by addition of forskolin/rolipram (F/R) to increase intracellular cAMP but not by the cAMP analogue 8‐pCPT‐2′‐O‐Methyl‐cAMP (O‐Me‐cAMP) which primarily stimulates protein kinase A (PKA)‐independent signaling via Epac/Rap 1. However, both F/R and O‐Me‐cAMP did not increase TER above control levels in the presence of NSC‐23766 in contrast to experiments without Rac 1 inhibition. Because Rac 1 was required for maintenance of barrier functions as well as for cAMP‐mediated barrier stabilization, we tested the role of Rac 1 and cAMP in thrombin‐induced barrier breakdown. Thrombin‐induced drop of TER and intercellular gap formation were paralleled by a rapid decrease of cAMP as revealed by fluorescence resonance energy transfer (FRET). The efficacy of F/R or O‐Me‐cAMP to block barrier‐destabilizing effects of thrombin was comparable to Y27632‐induced inhibition of Rho kinase but was blunted when Rac 1 was inactivated by NSC‐23766. Taken together, these data indicate that decrease of cAMP and Rac 1 activity may be an important step in inflammatory barrier disruption. J. Cell. Physiol. 220: 716–726, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Polyamine depletion with the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine (DFMO), prevents Rac1 activation causing the formation of a thick actin cortex at the cell periphery and inhibits migration of intestinal epithelial cells. In the present study, we demonstrate that MEK activation by EGF increased Rac1 activation, dissociation of intercellular contacts, and migration in both control and polyamine-depleted cells, while U0126, a specific inhibitor of MEK1, prevented disruption of junctions as well as EGF-induced Rac1 activation. Constitutively active MEK1 (CA-MEK) expression altered cell-cell contacts in control and polyamine depleted cells. The expression of constitutively active Rac1 (CA-Rac1) restored beta-catenin to the cell periphery and prevented the formation of actin cortex and caused the appearance of F-actin stress fibers in polyamine-depleted cells. Inhibition of Rac activation by NSC23766, a specific inhibitor of Tiam1, an upstream guanidine nucleotide exchange factor for Rac1, reproduced the beta-catenin localization and actin structure of polyamine-depleted cells. Tiam1 localized more extensively with beta-catenin at the cell periphery in CA-Rac1 cells compared to vector cells. Polyamine depletion decreased the expression of E-cadherin to a greater extent compared to beta-catenin. Subcellular fractionation further confirmed our immuno-localization and western blotting observations. These data suggest that EGF acting through MEK1/ERK to activate Rac1 regulates cell-cell contacts. Thus, decreased migration in polyamine depleted cells may be due to the inhibition of Tiam1 activation of Rac1 and the subsequent decreased expression of beta-catenin and E-cadherin leading to reduced cell-cell contacts.  相似文献   

14.
Pak (p21-activated kinase) serine/threonine kinases have been shown to mediate directional sensing of chemokine gradients. We hypothesized that Pak may also mediate chemokine-induced shape changes, to facilitate leucocyte chemotaxis through restrictive barriers, such as the extracellular matrix. A potent inhibitor, Pak(i), was characterized and used to probe the role of Pak-family kinases in SDF-1alpha (stromal-cell derived factor-1alpha/CXCL12)-induced chemotaxis in a T cell model. Pak(i) potently inhibited SDF-1alpha-induced Pak activation by a bivalent mechanism, as indicated by its complete inactivation upon point mutation of two binding sites, but partial inactivation upon mutation of either site alone. Importantly, Pak(i) was not toxic to cells over the time frame of our experiments, since it did not substantially affect cell surface expression of CXCR4 (CXC chemokine receptor 4) or integrins, cell cycle progression, or a number of ligand-induced responses. Pak(i) produced dose-dependent inhibition of SDF-1alpha-induced migration through rigid filters bearing small pores; but unexpectedly, did not substantially affect the magnitude or kinetics of chemotaxis through filters bearing larger pores. SDF-1alpha-induced Pak activation was partly dependent on PIX (Pak-interactive exchange factor); correspondingly, an allele of beta-PIX that cannot bind Pak inhibited SDF-1alpha-induced chemotaxis through small, but not large pores. By contrast, other key players in chemotaxis: G(i), PI3K (phosphoinositide 3-kinase), and the Rho-family G-proteins, Rac and Cdc42 (cell division cycle 42), were required for SDF-1alpha-induced migration regardless of the barrier pore-size. These studies have revealed a distinct branch of the SDF-1alpha signalling pathway, in which the Rac/Cdc42 effector, Pak, and its partner, PIX, specifically regulate the cellular events required for chemokine-induced migration through restrictive barriers.  相似文献   

15.
CC chemokines participate in the recruitment and activation of immune cells through CC chemokine receptors (CCRs). Here, we report that cross-talk between CCR1-mediated signaling pathway and FcepsilonRI-mediated signaling pathway affects degranulation positively but affects chemotaxis of mast cells adversely. Costimulation via FcepsilonRI engagement with IgE/antigen and CCR1 engagement with recombinant human CCL3 synergistically enhanced degranulation in rat basophilic leukemia-2H3 cells expressing human CCR1 (RBL-CCR1). Interestingly, FcepsilonRI engagement inhibited CCL3-mediated chemotaxis and membrane ruffling of RBL-CCR1 cells. Small GTP-binding proteins of the Rho family, Rac, Cdc42, and Rho control chemotaxis by mediating the reorganization of the actin cytoskeleton. Both a Rho inhibitor C3 exoenzyme and a Rho kinase (ROCK) inhibitor Y-27632 inhibited chemotaxis of RBL-CCR1 cells toward CCL3, indicating that activation of the Rho/ROCK signaling pathway is required for the CCL3-mediated chemotaxis of the cells. Costimulation with IgE/antigen and CCL3 enhanced Rac and Cdc42 activation but decreased ROCK activation in RBL-CCR1 cells compared with that in the cells stimulated with CCL3 alone. These results suggest that costimulation via FcepsilonRI and CCR1 engagements induced 1) inhibition of membrane ruffling, 2) decreased ROCK activation, and 3) reciprocal imbalance between Small GTP-binding proteins of the Rho family, which result in the inhibition of chemotaxis of RBL-CCR1 cells. The cross-talk between FcepsilonRI-mediated signaling pathway and CCR-mediated signaling pathway would induce optimal activation and arrested chemotaxis of mast cells, thus contributing to allergic inflammation.  相似文献   

16.
17.
The HIV viral entry co‐receptors CCR5 and CXCR4 function physiologically as typical chemokine receptors. Activation leads to cytosolic signal transduction that results in a variety of cellular responses such as cytoskeletal rearrangement and chemotaxis (CTX). Our aim was to investigate the signalling pathways involved in CC and CXC receptor‐mediated cell migration. Inhibition of dynamin I and II GTPase with dynasore completely inhibited CCL3‐stimulated CTX in THP‐1 cells, whereas the dynasore analogue Dyngo‐4a, which is a more potent inhibitor, showed reduced ability to inhibit CC chemokine‐induced CTX. In contrast, dynasore was not able to block cell migration via CXCR4. The same activation/inhibition pattern was verified in activated T lymphocytes for different CC and CXC chemokines. Cell migration induced by CC and CXC receptors does not rely on active internalization processes driven by dynamin because the blockade of internalization does not affect migration, but it might rely on dynamin interaction with the cytoskeleton. We identify here a functional difference in how CC and CXC receptor migration is controlled, suggesting that specific signalling networks are being employed for different receptor classes and potentially specific therapeutic targets to prevent receptor migration can be identified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.  相似文献   

19.
20.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号