首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. We here report that treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor (TNF) α substantially increased the expression of MCP-induced protein 1 (MCPIP1). Overexpression of MCPIP1 protected ECs against TNFα-induced endothelial activation, as characterized by the attenuation in the expression of the adhesion molecule VCAM-1 and monocyte adherence to ECs. Conversely, small interfering RNA-mediated knock down of MCPIP1 increased the expression of VCAM-1 and monocytic adherence to ECs. These studies identified MCPIP1 as a feedback control of cytokines-induced endothelial inflammation.  相似文献   

2.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

3.
4.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

5.
《Phytomedicine》2014,21(3):207-216
Tanshinone IIA is one of the major diterpenes in Salvia miltiorrhiza. The inhibitory effect of Tanshinone IIA on atherosclerosis has been reported, but the underlying mechanism is not fully understood. The present study aimed to study the anti-atherosclerosis effect of Tanshinone IIA on the adhesion of monocytes to vascular endothelial cells and related mechanism. Results showed that Tanshinone IIA, at the concentrations without cytotoxic effect, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated human vascular endothelial cells. The expressions of cell adhesion molecules including VCAM-1, ICAM-1 and E-selectin were induced by TNF-α in HUVECs at both the mRNA and protein levels. The mRNA and protein expressions of VCAM-1 and ICAM-1, but not E-selectin, were both significantly suppressed by Tanshinone IIA in a dose dependent manner. In addition, the TNF-α-induced mRNA expression of fractalkine/CX3CL1 and the level of soluble fractalkine were both reduced by Tanshinone IIA. We also found that Tanshinone IIA significantly inhibited TNF-α-induced nuclear translocation of NF-κB which was resulted from the inhibitory effect of Tanshinone IIA on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. As one of the major components of Salvia miltiorrhiza, Tanshinone IIA alone exerted more potent effect on inhibiting the adhesion of monocytes to vascular endothelial cells when compared with Salvia miltiorrhiza. All together, these results demonstrate a novel underlying mechanism for the anti-inflammatory effect of Tanshinone IIA by modulating TNF-α-induced expression of VCAM-1, ICAM-1 and fractalkine through inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway in human vascular endothelial cells.  相似文献   

6.
Major diseases such as cardiovascular diseases, rheumatoid arthritis, diabetes, obesity and tumor growth are known to involve inflammation. Inflammatory molecules such as MCP-1, TNF-α, IL-1β and IL-8 are known to promote angiogenesis. MCP-induced protein (MCPIP), originally discovered as a novel zinc finger protein induced by MCP-1, is also induced by other inflammatory agents. MCPIP was shown to mediate MCP-1-induced angiogenesis. Whether angiogenesis induced by other inflammatory agents is mediated via MCPIP is unknown and the molecular mechanisms involved in angiogenesis induced by MCPIP have not been elucidated. The aim of this study was to bridge this gap and delineate the sequential processes involved in angiogenesis mediated via MCPIP. siRNA knockdown of MCPIP was used to determine whether different inflammatory agents, MCP-1, TNF-α, IL-1β and IL-8, mediate angiogenesis via MCPIP in human umbilical vein endothelial cells (HUVECs). Chemical inhibitors and specific gene knockdown approach were used to inhibit each process postulated. Oxidative stress was inhibited by apocynin or cerium oxide nanoparticles or knockdown of NADPH oxidase subunit, phox47. Endoplasmic reticulum (ER) stress was blocked by tauroursodeoxycholate or knockdown of ER stress signaling protein IRE-1 and autophagy was inhibited by the use of 3'methyl adenine, or LY 294002 or by specific knockdown of beclin1. Matrigel assay was used as a tool to study angiogenic differentiation induced by inflammatory agents or MCPIP overexpression in HUVECs. Tube formation induced by inflammatory agents, TNF-α, IL-1β, IL-8 and MCP-1 was inhibited by knockdown of MCPIP. Forced MCPIP-expression induced oxidative stress, ER stress, autophagy and angiogenic differentiation in HUVECs. Inhibition of each step caused inhibition of each subsequent step postulated. The results reveal that angiogenesis induced by inflammatory agents is mediated via induction of MCPIP that causes oxidative and nitrosative stress resulting in ER stress leading to autophagy required for angiogenesis. The sequence of events suggested to be involved in inflammatory angiogenesis by MCPIP could serve as possible targets for therapeutic intervention of angiogenesis-related disorders.  相似文献   

7.
Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min-6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.  相似文献   

8.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   

9.
Caspase-8, an initiator caspase involved in lymphocyte apoptosis, is paradoxically required for lymphocyte proliferation. It is not understood how caspase-8 is controlled during antigenic signaling to allow for activation while averting the triggering of apoptosis. Here, we show that caspase-8 undergoes limited activation upon antigenic stimulation, and this activation is dependent on the paracaspase MALT1. The paracaspase domain of MALT1, in a protease-independent manner, induces caspase-8 activation through direct association. MALT1 diminishes the activation of apoptotic effector caspases, but it does not alter the activity of caspase-8 toward c-FLIP(L), which is required for antigenic signaling. Mutants of MALT1 that fail to activate caspase-8 and permit c-FLIP(L) cleavage cannot facilitate NF-kappaB activation or IL-2 induction. Our results reveal a mechanism that utilizes a protease potentially deadly to the cell for proliferative signaling and demonstrate a functional connection between the caspase and paracaspase families to enable nonapoptotic processes.  相似文献   

10.
11.
MALT1 paracaspase links signaling cascades emanating from adaptive or innate immune receptors to the canonical NF‐κB pathway. Now, Jaworski et al ( 2014 ) investigate the physiological role of MALT1 protease activity in mice. Besides the expected requirement of MALT1 activity for immune activation, the study unveils a novel function for MALT1 activity for the development of peripheral tolerance. Thus, MALT1 protease can act immunogenic or tolerogenic, and this interplay will be highly relevant for the clinical development of MALT1 inhibitors.  相似文献   

12.
13.
Joo HK  Lee YR  Lim SY  Lee EJ  Choi S  Cho EJ  Park MS  Ryoo S  Park JB  Jeon BH 《FEBS letters》2012,586(9):1349-1355
Peripheral benzodiazepine receptor (PBR) is a multifunctional protein mainly found on the outer mitochondrial membrane. PBR expression is increased by tumor necrosis factor-α (TNF-α) in endothelial cells. Adenoviral overexpression of PBR inhibits monocyte adhesion, VCAM-1, and ICAM-1 expression in TNF-α-activated endothelial cells. Rotenone, cyclosporine A, and bongkrekic acid suppress TNF-α-induced VCAM-1 expression. Overexpression of PBR inhibits voltage-dependent anion channel-1 (VDAC-1) expression and the silencing of PBR increases VDAC-1 expression in endothelial cells. Moreover, TNF-α-induced VCAM-1 expression is suppressed by VDAC-1 gene silencing. PBR overexpression significantly decreases TNF-α-induced mitochondrial reactive oxygen species and MnSOD expression. These results suggest that PBR can inhibit endothelial activation and this action is related to the inhibition of mitochondrial ROS and/or VDAC-1 expression in endothelial cells.  相似文献   

14.
15.
Upregulation of adhesion proteins plays an important role in mediating inflammation. The induction of adhesive molecules has been well studied, but the reversibility of their expression has not been well characterized. A neutralizing anti-TNF monoclonal antibody (cA2) was used to study the down regulation of TNF-induced E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on cultured human umbilical vein endothelial cells (HUVECs). Addition of cA2 following TNF stimulation of HUVECs enhanced the rate of E-selectin and VCAM-1 down-regulation from the cell surface and also reduced steady state E-selectin and VCAM-1 mRNA levels. The cA2-mediated disappearance of E-selectin, but not VCAM-1 protein was microtubule and not microfilament dependent. Neutralization of TNF only slightly reduced ICAM-1 cell surface levels following initial TNF stimulation, suggesting a slower turnover of ICAM-1 compared to E-selectin and VCAM-1. Microtubule inhibition during TNF stimulation partially inhibited E-selectin, VCAM-1 and ICAM-1 mRNA upregulation. VCAM-1 and ICAM-1 cell surface expression were similarly partially inhibited, however, E-selectin levels were unaffected, presumably due to the dual, opposing effect of inhibiting protein expression and inhibiting internalization. Microfilament inhibition during protein induction specifically inhibited the maximal expression of VCAM-1 protein and mRNA, without affecting E-selectin or ICAM-1. These data support the notion that E-selectin, VCAM-1, and ICAM-1 expression are differentially regulated on HUVECs and suggest that TNF neutralizing therapies may be effective because of their ability to reduce the levels of pre-existing adhesion proteins.  相似文献   

16.
17.
Glutathione peroxidase-1 (GPx-1) is a crucial antioxidant enzyme, the deficiency of which promotes atherogenesis. Accordingly, we examined the mechanisms by which GPx-1 deficiency enhances endothelial cell activation and inflammation. In human microvascular endothelial cells, we found that GPx-1 deficiency augments intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression by redox-dependent mechanisms that involve NFκB. Suppression of GPx-1 enhanced TNF-α-induced ROS production and ICAM-1 expression, whereas overexpression of GPx-1 attenuated these TNF-α-mediated responses. GPx-1 deficiency prolonged TNF-α-induced IκBα degradation and activation of ERK1/2 and JNK. JNK or NFκB inhibition attenuated TNF-α induction of ICAM-1 and VCAM-1 expression in GPx-1-deficient and control cells, whereas ERK1/2 inhibition attenuated only VCAM-1 expression. To analyze further signaling pathways involved in GPx-1-mediated protection from TNF-α-induced ROS, we performed microarray analysis of human microvascular endothelial cells treated with TNF-α in the presence and absence of GPx-1. Among the genes whose expression changed significantly, dual specificity phosphatase 4 (DUSP4), encoding an antagonist of MAPK signaling, was down-regulated by GPx-1 suppression. Targeted DUSP4 knockdown enhanced TNF-α-mediated ERK1/2 pathway activation and resulted in increased adhesion molecule expression, indicating that GPx-1 deficiency may augment TNF-α-mediated events, in part, by regulating DUSP4.  相似文献   

18.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.  相似文献   

19.
Carbon monoxide (CO) abrogates TNF-α-mediated inflammatory responses in endothelial cells, yet the underlying mechanism thereof is still elusive. We have previously shown that the anti-inflammatory effect of CO-releasing molecule-3 (CORM-3) is not completely mediated via deactivation of the NF-κB pathway. In this study, we sought to explore other potential mechanisms by which CORM-3 downregulates VCAM-1 expression on TNF-α-stimulated HUVECs. By genome-wide gene expression profiling and pathway analysis we studied the relevance of particular pathways for the anti-inflammatory effect of CORM-3. In CORM-3-stimulated HUVECs significant changes in expression were found for genes implicated in the proteasome and porphyrin pathways. Although proteasome activities were increased by CORM-3, proteasome inhibitors did not abolish the effect of CORM-3. Likewise, heme oxygenase-1 inhibitors did not abrogate the ability of CORM-3 to downregulate VCAM-1 expression. Interestingly, CORM-3 inhibited MAPK p38, and the p38 inhibitor SB203580 downregulated VCAM-1 expression. However, downregulation of VCAM-1 by CORM-3 occurred only at concentrations that partly inhibit ATP production and sodium azide and oligomycin paralleled the effect of CORM-3 in this regard. Our results indicate that CORM-3-induced downregulation of VCAM-1 is mediated via p38 inhibition and mitochondrial respiration, whereas the ubiquitin-proteasome system seems not to be involved.  相似文献   

20.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号