首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Excessive proliferation of human pulmonary artery smooth muscle cells (HPASMC) is one of the major factors that trigger vascular remodeling in hypoxia-induced pulmonary hypertension. Several studies have implicated that hypoxia inhibits the tumor suppressor p21 (CDKN1A). However, the precise mechanism is unknown.The mouse model of hypoxia-induced PH and in vitro experiments were used to assess the impact of microRNAs (miRNAs) on the expression of CDKN1A. In these experiments, the miRNA family miR-130 was identified to regulate the expression of CDKN1A. Transfection of HPASMC with miR-130 decreased the expression of CDKN1A and, in turn, significantly increased smooth muscle proliferation. Conversely, inhibition of miR-130 by anti-miRs and seed blockers increased the expression of CDKN1A. Reporter gene analysis proved a direct miR-130–CDKN1A target interaction. Exposure of HPASMC to hypoxia was found to induce the expression of miR-130 with concomitant decrease of CDKN1A. These findings were confirmed in the mouse model of hypoxia-induced pulmonary hypertension showing that the use of seed blockers against miR-130 restored the expression of CDKN1A.These data suggest that miRNA family miR-130 plays an important role in the repression of CDKN1A by hypoxia. miR-130 enhances hypoxia-induced smooth muscle proliferation and might be involved in the development of right ventricular hypertrophy and vascular remodeling in pulmonary hypertension.  相似文献   

3.
4.
Pulmonary hypertension (PH) is a devastating disease leading to progressive hypoxemia, right ventricular failure, and death. Hypoxia can play a pivotal role in PH etiology, inducing pulmonary vessel constriction and remodeling. These events lead to increased pulmonary vessel wall thickness, elevated vascular resistance and right ventricular hypertrophy. The current study examined the association of the inflammatory cytokine macrophage migration inhibitory factor (MIF) with chronic lung disease and its role in the development of hypoxia-induced PH. We found that plasma MIF in patients with primary PH or PH secondary to interstitial lung disease (ILD) was significantly higher than in the control group (P = 0.004 and 0.007, respectively). MIF involvement with hypoxia-induced fibroblast proliferation was examined in both a human cell-line and primary mouse cells from wild-type (mif +/+) and MIF-knockout (mif −/−) mice. In vitro, hypoxia-increased MIF mRNA, extracellular MIF protein accumulation and cell proliferation. Inhibition of MIF inflammatory activity reduced hypoxia-induced cell proliferation. However, hypoxia only increased proliferation of mif −/− cells when they were supplemented with media from mif +/+ cells. This growth increase was suppressed by MIF inhibition. In vivo, chronic exposure of mice to a normobaric atmosphere of 10% oxygen increased lung tissue expression of mRNA encoding MIF and accumulation of MIF in plasma. Inhibition of the MIF inflammatory active site, during hypoxic exposure, significantly reduced pulmonary vascular remodeling, cardiac hypertrophy and right ventricular systolic pressure. The data suggest that MIF plays a critical role in hypoxia-induced PH, and its inhibition may be beneficial in preventing the development and progression of the disease.  相似文献   

5.
Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, with subsequent extracellular matrix (ECM) production and smooth muscle cell (SMC) proliferation. Changes in the ECM can modulate vasoreactivity and SMC contraction. Galectin-1 (Gal-1) is a hypoxia-inducible beta-galactoside-binding lectin produced by vascular, interstitial, epithelial, and immune cells. Gal-1 regulates SMC differentiation, proliferation, and apoptosis via interactions with the ECM, as well as immune system function, and, therefore, likely plays a role in the pathogenesis of PH. We investigated the effects of Gal-1 during hypoxic PH by quantifying 1) Gal-1 expression in response to hypoxia in vitro and in vivo and 2) the effect of Gal-1 gene deletion on the magnitude of the PH response to chronic hypoxia in vivo. By constructing and screening a subtractive library, we found that acute hypoxia increases expression of Gal-1 mRNA in isolated pulmonary mesenchymal cells. In wild-type (WT) mice, Gal-1 immunoreactivity increased after 6 wk of hypoxia. Increased expression of Gal-1 protein was confirmed by quantitative Western analysis. Gal-1 knockout (Gal-1(-/-)) mice showed a decreased PH response, as measured by right ventricular pressure and the ratio of right ventricular to left ventricular + septum wet weight compared with their WT counterparts. However, the number and degree of muscularized vessels increased similarly in WT and Gal-1(-/-) mice. In response to chronic hypoxia, the decrease in factor 8-positive microvessel density was similar in both groups. Vasoreactivity of WT and Gal-1(-/-) mice was tested in vivo and with use of isolated perfused lungs exposed to acute hypoxia. Acute hypoxia caused a significant increase in RV pressure in wild-type and Gal-1(-/-) mice; however, the response of the Gal-1(-/-) mice was greater. These results suggest that Gal-1 influences the contractile response to hypoxia and subsequent remodeling during hypoxia-induced PH, which influences disease progression.  相似文献   

6.
7.
8.
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O2•−) and hydrogen peroxide (H2O2) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O2•− (mtO2•−) and H2O2 (mtH2O2) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO2•− and mtH2O2. To assess the contribution of mtO2•− and mtH2O2 to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (TghSOD2) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O2) or hypoxia (10% O2) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H2O2 (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, TghSOD2 mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO2•− and mtH2O2. Targeting mtH2O2 attenuates PH pathogenesis, whereas targeting mtO2•− exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H2O2 release. These studies suggest that targeted reductions in mtH2O2 generation may be particularly effective in preventing hypoxia-induced PH.  相似文献   

9.
《Autophagy》2013,9(7):1146-1147
Recent research suggests that microtubule-associated protein 1 light chain 3B (LC3B) confers protection against hypoxia-induced pulmonary hypertension (HPH) by inhibiting proliferation of pulmonary artery (PA) wall cells. We recently demonstrated that 17β-estradiol (E2), a sex hormone with known protective properties in HPH, increases lung LC3-II expression in chronically hypoxic male Sprague-Dawley rats. Stimulatory E2 effects on LC3-II were recapitulated in isolated hypoxic (1% O2 for 48 h), but not room air-exposed primary rat PA endothelial cells (PAECs), and were accompanied by hypoxia-specific inhibitory effects on other parameters involved in proproliferative signaling (MAPK3/ERK1-MAPK1/ERK2 activation, VEGF secretion), as well as inhibitory effects on PAEC proliferation. Taken together, these results suggest that E2 mediates hypoxia-specific antiproliferative effects in PAECs, and that stimulation of autophagy may be one of the underlying mechanisms of E2-mediated protection in HPH. Viewed in the context of previously published data, these results indicate that LC3 1) exerts protective effects in the pathogenesis of HPH, and 2) may represent a potential target for future therapeutic interventions in HPH.  相似文献   

10.

Background

Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.

Methodology/Principal Findings

Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3−/− hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3−/− mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3−/− mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3−/− mice.

Conclusions

Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.  相似文献   

11.
Induction of hypercapnia by breathing high concentrations of carbon dioxide (CO(2)) may have beneficial effects on the pulmonary circulation. We tested the hypothesis that exposure to CO(2) would protect against chronic pulmonary hypertension in newborn rats. Atmospheric CO(2) was maintained at <0.5% (normocapnia), 5.5%, or 10% during exposure from birth for 14 days to normoxia (21% O(2)) or moderate hypoxia (13% O(2)). Pulmonary vascular and hemodynamic abnormalities in animals exposed to chronic hypoxia included increased pulmonary arterial resistance, right ventricular hypertrophy and dysfunction, medial thickening of pulmonary resistance arteries, and distal arterial muscularization. Exposure to 10% CO(2) (but not to 5.5% CO(2)) significantly attenuated pulmonary vascular remodeling and increased pulmonary arterial resistance in hypoxia-exposed animals (P < 0.05), whereas both concentrations of CO(2) normalized right ventricular performance. Exposure to 10% CO(2) attenuated increased oxidant stress induced by hypoxia, as quantified by 8-isoprostane content in the lung, and prevented upregulation of endothelin-1, a critical mediator of pulmonary vascular remodeling. We conclude that hypercapnic acidosis has beneficial effects on pulmonary hypertension and vascular remodeling induced by chronic hypoxia, which we speculate derives from antioxidant properties of CO(2) on the lung and consequent modulating effects on the endothelin pathway.  相似文献   

12.
To test the hypothesis that exogenous atrial natriuretic peptide (ANP) prevents the acute pulmonary pressor response to hypoxia, ANP (20-micrograms/kg bolus followed by 1-microgram.kg-1.min-1 infusion) or vehicle was administered intravenously to conscious rats beginning 3 min before exposure to hypoxia or room air for 90 min. Exogenous ANP abolished the acute pulmonary pressor response to hypoxia in association with marked and parallel increases in plasma ANP and guanosine 5'-cyclic monophosphate (cGMP) and with a significant increase in lung cGMP content. To examine whether endogenous ANP modulates the acute pulmonary pressor response to hypoxia, rats were pretreated with a monoclonal antibody (Ab) to ANP and exposed to hypoxia. Mean pulmonary arterial pressure (MPAP) in the Ab-treated rats was not different from control over the first 6 h of hypoxic exposure. Thereafter, the Ab-treated group had significantly higher MPAP than control. Our data suggest that 1) exogenous ANP blocks the pulmonary pressor response to acute hypoxia via stimulation of cGMP accumulation in the pulmonary vasculature, and 2) endogenous ANP may modulate the subacute, but not acute, phase of hypoxic pulmonary hypertension.  相似文献   

13.
Tim Lahm  Irina Petrache 《Autophagy》2012,8(7):1146-1147
Recent research suggests that microtubule-associated protein 1 light chain 3B (LC3B) confers protection against hypoxia-induced pulmonary hypertension (HPH) by inhibiting proliferation of pulmonary artery (PA) wall cells. We recently demonstrated that 17β-estradiol (E2), a sex hormone with known protective properties in HPH, increases lung LC3-II expression in chronically hypoxic male Sprague-Dawley rats. Stimulatory E2 effects on LC3-II were recapitulated in isolated hypoxic (1% O2 for 48 h), but not room air-exposed primary rat PA endothelial cells (PAECs), and were accompanied by hypoxia-specific inhibitory effects on other parameters involved in proproliferative signaling (MAPK3/ERK1-MAPK1/ERK2 activation, VEGF secretion), as well as inhibitory effects on PAEC proliferation. Taken together, these results suggest that E2 mediates hypoxia-specific antiproliferative effects in PAECs, and that stimulation of autophagy may be one of the underlying mechanisms of E2-mediated protection in HPH. Viewed in the context of previously published data, these results indicate that LC3 1) exerts protective effects in the pathogenesis of HPH, and 2) may represent a potential target for future therapeutic interventions in HPH.  相似文献   

14.
AbstractTo test the hypothesis that hypoxia inducible factor-1 alpha (HIF-1α)up-regulated theexpression of heme oxygenase-1 (HO-1) gene in pulmonary arteries of rats with hypoxia-induced pulmonaryhypertension, 8 male Wistar rats in each of 5 groups were exposed to hypoxia for 0, 3, 7, 14 or 21 d, respectively.Mean pulmonary arterial pressure (mPAP), vessel morphometry and right ventricle hypertrophy index weremeasured. Lungs were inflation fixed for immunohistochemistry, in situ hybridization; frozen for latermeasurement of HO-1 enzyme activity, mPAP increased significantly after 7 d of hypoxia [(18.4 ± 0.4)mmHg, P<0.05], reaching its peak after 14 d of hypoxia, then remained stable. Pulmonary artery remodeling became to develop significantly after 14 d of hypoxia. HIF-1αprotein in control was poorly positive (0.05 ±0.01), but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats. In pulmonary arterialtunica media, the levels of HIF-la protein were markedly up-regulated after 3 d and 7 d of hypoxia(0.20±0.02; 0.22 ± 0.02, P<0.05), then declined after 14 d and 21 d of hypoxia. HIF-mRNA stainingwas poorly positive in control, hypoxia for 3 and 7 d, but enhanced significantly after 14 d of hypoxia(0.20±0.02, P<0.05), then remained stable. HO-1 protein increased after 7 d of hypoxia (0.10±0.01,P<0.05), reaching its peak after 14 d of hypoxia (0.21 0.02, P<0.05), then remained stable. HO-1 mRNA increased after 3 d of hypoxia, reaching its peak after 7 d of hypoxia (0.17 ± 0.01, P<0.05), then declined.Linear correlation analysis showed that HIF-lα mRNA, HO-1 protein and mPAP were associatedwith pulmonary remodeling. HIF-1 α protein (tunica intima) was conversely correlated with HIF-1α mRNA(r=0.921, P<0.01), HO-1 protein was conversely correlated with HIF-1α protein (tunica intima)(r=0.821, P<0.01 ). HIF-1αand HO-1 were both involved in the pathogenesis of hypoxia-induced pulmonaryhypertension in rat. Hypoxia inducible factor-1 alpha correlated the expression of heme oxygenase 1 genein pulmonary arteries of rat with hypoxia-induced pulmonary hypertension.  相似文献   

15.
16.
17.
Scanning electron microscopy was used to study the endothelial surface of the pulmonary trunk, artery, and vein in normobaric control rats as well as in rats exposed to hypobaric hypoxia for 7 and 21 days. The individual endothelial cells of the normobaric pulmonary trunk and hilar artery were flat and slightly elongated with elevated nuclear regions, and those of the intermediate-sized artery were more elongated and had more microvilli than the large arteries studied. Their endothelial cell boundaries were outlined by beaded cytoplasmic projections. The surfaces of the normobaric hilar and intermediate-sized veins were smooth and demonstrated numerous longitudinal streaks. These venous endothelial cells were elongated and their cell boundaries were outlined by low discontinuous marginal folds. Exposure to hypobaric hypoxia caused the following changes on the arterial surface: elevation of the endothelial cells; formation of microvilli-rich cell clusters; formation of hollow defects; and the attachment of leukocytes. Hypobaric hypoxia also caused the disappearance of the longitudinal streaks and the occurrence of microvilli-rich cells in the hilar veins. The endothelial surface modifications in the hypobaric rats could be related to thickening of the endothelium, intimal edema, increased intimal connective tissue, luminal invasion of leukocytes, and increased endothelial cell proliferation, known to occur in systemic arteries of hypertensive animals.  相似文献   

18.
19.
Hypoxia-inducible factor-1alpha subunit (HIF-1alpha) plays a pivotal role during the development of hypoxia-induced pulmonary hypertension (HPH) by transactivating it' target genes. As an oxygen-sensitive attenuator, factor inhibiting HIF-1 (FIH) hydroxylates a conserved asparagine residue within the C-terminal transactivation domain of HIF-1alpha under normoxia and moderate hypoxia. FIH protein is downregulated in response to hypoxia, but its dynamic expression and role during the development of HPH remains unclear. In this study, an HPH rat model was established. The mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. The pulmonary artery remodeling index became evident after 7 d of hypoxia, while the right ventricular hypertrophy index became significant after 14 d of hypoxia. The messenger RNA (mRNA) and protein expression of HIF-1alpha and vascular endothelial growth factor (VEGF), a well-characterized target gene of HIF-1alpha, were markedly upregulated after exposure to hypoxia in pulmonary arteries. FIH protein in lung tissues declined after 7 d of hypoxia and continued to decline through the duration of hypoxia. FIH mRNA had few changes after exposure to hypoxia compared with after exposure to normoxia. In hypoxic rats, FIH protein showed significant negative correlation with VEGF mRNA and VEGF protein. FIH protein was negatively correlated with mean pulmonary arterial pressure, pulmonary artery remodeling index and right ventricular hypertrophy index. Taken together, our results suggest that, in the pulmonary arteries of rat exposed to moderate hypoxia, a time-dependent decrease in FIH protein may contribute to the development of rat HPH by enhancing the transactivation of HIF-1alpha target genes such as VEGF.  相似文献   

20.
Pulmonary hypertension (PH) is characterized by a thickening of the distal pulmonary arteries caused by medial hypertrophy, intimal proliferation and vascular fibrosis. Low density lipoprotein receptor-related protein 1 (LRP1) maintains vascular homeostasis by mediating endocytosis of numerous ligands and by initiating and regulating signaling pathways.Here, we demonstrate the increased levels of LRP1 protein in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline-treated rats. Platelet-derived growth factor (PDGF)-BB upregulated LRP1 expression in pulmonary artery smooth muscle cells (PASMC). This effect was reversed by the PDGF-BB neutralizing antibody or the PDGF receptor antagonist. Depletion of LRP1 decreased proliferation of donor and IPAH PASMC in a β1-integrin-dependent manner. Furthermore, LRP1 silencing attenuated the expression of fibronectin and collagen I and increased the levels of α-smooth muscle actin and myocardin in donor, but not in IPAH, PASMC. In addition, smooth muscle cell (SMC)-specific LRP1 knockout augmented α-SMA expression in pulmonary vessels and reduced SMC proliferation in 3D ex vivo murine lung tissue cultures.In conclusion, our results indicate that LRP1 promotes the dedifferentiation of PASMC from a contractile to a synthetic phenotype thus suggesting its contribution to vascular remodeling in PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号