首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundGluconeogenesis and renal glucose excretion in kidneys both play an important role in glucose homeostasis. Sodium-glucose cotransporter (SGLT2), coded by the SLC5A2 gene is responsible for reabsorption up to 99% of the filtered glucose in proximal tubules. SLC5A2 genetic polymorphisms were suggested to influence glucose homeostasis. We investigated if common SLC5A2 rs9934336 polymorphism influences glycemic control and risk for macro or microvascular complications in Slovenian type 2 diabetes (T2D) patients.MethodsAll 181 clinically well characterized T2D patients were genotyped for SLC5A2 rs9934336 G>A polymorphism. Associations with glycemic control and T2D complications were assessed with nonparametric tests and logistic regression.ResultsSLC5A2 rs9934336 was significantly associated with increased fasting blood glucose levels (P<0.001) and HbA1c levels under the dominant genetic model (P=0.030). After adjustment for T2D duration, significantly higher risk for diabetic retinopathy was present in carriers of at least one polymorphic SLC5A2 rs9934336 A allele compared to non-carriers (OR=7.62; 95%CI=1.65-35.28; P=0.009).ConclusionsOur pilot study suggests an important role of SLC5A2 polymorphisms in the physiologic process of glucose reabsorption in kidneys in T2D patients. This is also the first report on the association between SLC5A2 polymorphism and diabetic retinopathy.  相似文献   

2.
A new series of C-phenyl d-glucitol derivatives was designed and synthesized, and their SGLT1 inhibitory potency and absorbability were evaluated. We also investigated whether kidney drug retention could be avoided by creating molecules with different excretion pathways. To achieve a class of molecules with low absorption and that were excreted in bile, optimized synthesis was performed to bring the ClogP value and the topological polar surface area to within the appropriate ranges. Compounds 34d and 34j were poorly absorbed, but the absorbed compounds were mainly excreted in bile. Thus, smaller amounts of persistent residue in the kidneys were observed. Since 34d exerted a glucose-lowering effect at a dose of 0.3?mg/kg (p.o.) in SD rats, this compound (SGL5213) could be a clinical candidate for the treatment of type 2 diabetes.  相似文献   

3.
The design and synthesis of a novel class of low-absorbable SGLT1 inhibitors are described. To achieve low absorption in the new series, we performed an optimization study based on a strategy to increase TPSA. Fortunately, the optimization of an aglycon moiety and a side chain of the distal aglycon moiety led to the identification of compound 30b as a potent and low-absorbable SGLT1 inhibitor. Compound 30b showed a desirable PK profile in Sprague-Dawley (SD) rats and a favorable glucose-lowering effect in diabetic rats.  相似文献   

4.

Background

This meta-analytic study explored the relationship between the risk of type 2 diabetes mellitus (T2DM) and bisphenol A concentrations.

Methods

The Embase and Medline (PubMed) databases were searched, using relevant keywords, for studies published between 1980 and 2018. A total of 16 studies, twelve cross-sectional, two case-control and one prospective, were included in the meta-analysis. The odds ratio (OR) and its 95% confidence interval (CI) were determined across the sixteen studies. The OR and its 95% CI of diabetes associated with bisphenol A were estimated using both fixed-effects and random-effects models.

Results

A total of 41,320 subjects were included. Fourteen of the sixteen studies included in the analysis provided measurements of urine bisphenol A levels and two study provided serum bisphenol A levels. Bisphenol A concentrations in human bio-specimens showed positive associations with T2DM risk (OR 1.28, 95% CI 1.14, 1.44). A sensitivity analysis indicated that urine bisphenol A concentrations were positively associated with T2DM risk (OR 1.20, 95% CI 1.09, 1.31).

Conclusions

This meta-analysis indicated that Bisphenol A exposure is positively associated with T2DM risk in humans.
  相似文献   

5.
6.
7.
8.
Patients with primary renal glucosuria have normal blood glucose levels, normal oral glucose tolerance test results, and isolated persistant glucosuria. Congenital renal glucosuria is postulated to be attributable to defects in the SGLT2 gene. The Na(+)/glucose cotransporter gene SGLT2 (= SLC5A2) was analyzed in a Turkish patient with congenital isolated renal glucosuria. Genomic DNA was used as a template for amplification by the polymerase chain reaction of each of the 14 exons of the SGLT2 gene. The amplification products were sequenced. DNA sequence analysis revealed a homozygous nonsense mutation in exon 11 of the SGLT2 gene leading to the formation of a truncated cotransporter. Both parents and a younger brother, all three without renal glucosuria, are heterozygous for the nonsense mutation. Our data provide the first direct evidence of an etiologic role for the sodium/glucose cotransporter type 2 in the pathogenesis of renal glucosuria.  相似文献   

9.
The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(−) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the KiPz and KmαMG for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher KiPz values than wtSGLT1 with minimal changes in KmαMG, the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.  相似文献   

10.

Aims

Data on the association between the ghrelin Leu72Met polymorphism and type 2 diabetes are conflicting. A meta-analysis was performed on this topic.

Methods

We searched for case–control studies using electronic databases (Medline and PubMed) and reference lists of studies. Odds ratios (OR) and 95% confidence intervals (CI) assuming dominant, recessive and homozygote comparison genetic models were calculated.

Results

Six case–control studies involving a total of 3417 cases and 3081 controls were included in this meta-analysis. No association was found between the ghrelin Leu72Met polymorphism and type 2 diabetes risk in the overall population in dominant, recessive and homozygote comparison models. However, in subgroup analyses stratified by ethnicity, we found that the risk for type 2 diabetes was decreased in subjects with Met72 + genotypes in Caucasians (OR = 0.79, 95% CI: 0.64–0.98, Pz = 0.030).

Conclusion

The ghrelin Leu72Met polymorphism was protective against type 2 diabetes in Caucasians. Future studies performed in larger sample size are needed to allow a more definitive conclusion.  相似文献   

11.
A series of C-aryl glucosides with various substituents at the 4′-position of the distal aryl ring have been synthesized and evaluated for inhibition of hSGLT1 and hSGLT2. Introduction of alkyl or alkoxy substituents at the 4′-position was found to improve SGLT2 potency, whereas introduction of a hydrophilic group at this position was deleterious. Compounds with alkoxy-, cycloalkoxy- or cycloalkenyloxy-ethoxy scaffolds exhibited good inhibitory activity and high selectivity toward SGLT2. Selected compounds were investigated for in vivo efficacy.  相似文献   

12.
The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.  相似文献   

13.
Metallothionein (MT) as a potent antioxidant can affect energy metabolism. The present study was undertaken to investigate the association between MT gene polymorphism and type 2 diabetes mellitus. Using the PCR-based restriction fragment length polymorphism method, seven single nucleotide polymorphisms (SNPs) in MT genes (rs8052394 and rs11076161 in MT1A gene, rs8052334, rs964372, and rs7191779 in MT1B gene, rs708274 in MT1E gene, and rs10636 in MT2A gene) were detected in 851 Chinese people of Han descent (397 diabetes and 454 controls). Several serum measurements were also examined randomly for 43 diabetic patients and 41 controls. The frequency distributions of the G allele in SNP rs8052394 of MT1A gene were significantly associated with the incidence of type 2 diabetes. There was no difference between patients and controls for the rest of six SNPs. Serum levels of interleukin-6 and tumor necrosis factor-alpha were higher, and serum superoxide dismutase activity was significantly lower in the diabetic group than those in the control group. For diabetic patients, serum superoxide dismutase activity was significantly lower in GG or GA carriers than those of AA carriers of rs8052394 SNP. Increased serum levels in diabetic patients were positively associated with rs964372 SNP, and type 2 diabetes with neuropathy was positively associated with rs10636 and rs11076161. These results suggest that multiple SNPs in MT genes are associated with diabetes and its clinical symptoms. Furthermore, MT1A gene in rs8052394 SNP is most likely the predisposition gene locus for diabetes or changes of serum superoxide dismutase activity.  相似文献   

14.

Background:

Patients with type 2 diabetes have a 40% increased risk of bladder cancer. Thiazolidinediones, especially pioglitazone, may increase the risk. We conducted a systematic review and meta-analysis to evaluate the risk of bladder cancer among adults with type 2 diabetes taking thiazolidinediones.

Methods:

We searched key biomedical databases (including MEDLINE, Embase and Scopus) and sources of grey literature from inception through March 2012 for published and unpublished studies, without language restrictions. We included randomized controlled trials (RCTs), cohort studies and case–control studies that reported incident bladder cancer among people with type 2 diabetes who ever (v. never) were exposed to pioglitazone (main outcome), rosiglitazone or any thiazolidinedione.

Results:

Of the 1787 studies identified, we selected 4 RCTs, 5 cohort studies and 1 case–control study. The total number of patients was 2 657 365, of whom 3643 had newly diagnosed bladder cancer, for an overall incidence of 53.1 per 100 000 person-years. The one RCT that reported on pioglitazone use found no significant association with bladder cancer (risk ratio [RR] 2.36, 95% confidence interval [CI] 0.91–6.13). The cohort studies of thiazolidinediones (pooled RR 1.15, 95% CI 1.04–1.26; I2 = 0%) and of pioglitazone specifically (pooled RR 1.22, 95% CI 1.07–1.39; I2 = 0%) showed significant associations with bladder cancer. No significant association with bladder cancer was observed in the two RCTs that evaluated rosiglitazone use (pooled RR 0.87, 95% CI 0.34–2.23; I2 = 0%).

Interpretation:

The limited evidence available supports the hypothesis that thiazolidinediones, particularly pioglitazone, are associated with an increased risk of bladder cancer among adults with type 2 diabetes.People with type 2 diabetes are at increased risk of several types of cancer, including a 40% increased risk of bladder cancer, compared with those without diabetes.1,2 The strong association with bladder cancer is hypothesized to be a result of hyperinsulinemia, whereby elevated insulin levels in type 2 diabetes stimulate insulin receptors on neoplastic cells, promoting cancer growth and division.1,35 Additional risk factors for bladder cancer include increased age, male sex, smoking, occupational and environmental exposures and urinary tract disease.6 Exogenous insulin and other glucose-lowering medications such as sulfonylureas, metformin and thiazolidinediones, may further modify the risk of bladder cancer.1Data from the placebo-controlled PROactive trial of pioglitazone (PROspective pioglitAzone Clinical Trial in macroVascular Events) suggested a higher incidence of bladder cancer among pioglitazone users than among controls.7 Subsequent randomized controlled trials (RCTs) and observational studies have reported conflicting results for pioglitazone, with various studies reporting a significant increase,8,9 a nonsignificant increase10 and even a decreased risk11 of bladder cancer.To test the hypothesis that pioglitazone use is associated with an increased risk of bladder cancer, we conducted a systematic review and meta-analysis of RCTs and observational studies reporting bladder cancer among adults with type 2 diabetes taking pioglitazone. To clarify the possibility of a drug-class effect, we also examined data for all thiazolidinediones and for rosiglitazone alone.  相似文献   

15.
16.
17.
18.

Background

Chemokine (C-C motif) ligand 2 (CCL2), commonly known as monocyte chemoattractant protein-1 (MCP-1), has been implicated in the pathogenesis of many diseases characterized by monocytic infiltration. However, limited data have been reported on MCP-1 in type 1 diabetes (T1D) and the findings are inconclusive and inconsistent.

Methods

In this study, MCP-1 was measured in the sera from 2,472 T1D patients and 2,654 healthy controls using a Luminex assay. The rs1024611 SNP in the promoter region of MCP-1 was genotyped for a subset of subjects (1764 T1D patients and 1323 controls) using the TaqMan-assay.

Results

Subject age, sex or genotypes of MCP-1 rs1024611SNP did not have a major impact on serum MCP-1 levels in either healthy controls or patients. While hemoglobin A1c levels did not have a major influence on serum MCP-1 levels, the mean serum MCP-1 levels are significantly higher in patients with multiple complications (mean = 242 ng/ml) compared to patients without any complications (mean = 201 ng/ml) (p = 3.5×10−6). Furthermore, mean serum MCP-1 is higher in controls (mean = 261 ng/ml) than T1D patients (mean = 208 ng/ml) (p<10−23). More importantly, the frequency of subjects with extremely high levels (>99th percentile of patients or 955 ng/ml) of serum MCP-1 is significantly lower in the T1D group compared to the control group (odds ratio = 0.11, p<10−33).

Conclusion

MCP-1 may have a dual role in T1D and its complications. While very high levels of serum MCP-1 may be protective against the development of T1D, complications are associated with higher serum MCP-1 levels within the T1D group.  相似文献   

19.
The central role of Na(+) -K(+) -2Cl(-) cotransporter type 2 (NKCC2) in vectorial transepithelial salt reabsorption in thick ascending limb cells from Henle's loop in the kidney is evidenced by the effects of loop diuretics, the pharmacological inhibitors of NKCC2, that are amongst the most powerful antihypertensive drugs available to date. Moreover, genetic mutations of the NKCC2 encoding gene resulting in impaired apical targeting and function of NKCC2 transporter give rise to a pathological phenotype known as type I Bartter syndrome, characterised by a severe volume depletion, hypokalaemia and metabolic alkalosis with high prenatal mortality. On the contrary, excessive NKCC2 activity has been linked with inherited hypertension in humans and in rodent models. Interestingly, in animal models of hypertension, NKCC2 upregulation is achieved by post-translational mechanisms underlining the need to analyse the molecular mechanisms involved in the regulation of NKCC2 trafficking and activity to gain insights in the pathogenesis of hypertension.  相似文献   

20.
Y Zhang  G Hu  Z Yuan  L Chen 《PloS one》2012,7(8):e42551

Background

Chronic hyperglycemia in type 2 diabetes increases the risk of microvascular events. However, there is continuing uncertainty about its effect on macrovascular outcomes and death. We conducted a meta-analysis of prospective studies to estimate the association of glycosylated hemoglobin level with the risk of all-cause mortality and cardiovascular outcomes among patients with type 2 diabetes.

Methodology/Principal Findings

We systematically searched the MEDLINE database through April 2011 by using Medical Subject Heading search terms and a standardized protocol. We included prospective cohort studies that reported data of glycosylated hemoglobin level on the risk of incident cardiovascular events and all-cause mortality. Relative risk estimates (continuous and categorical variables) were derived or abstracted from each cohort study. Twenty six studies were included in this analysis with a mean follow-up rang of 2.2–16 years. The pooled relative risk associated with a 1% increase in glycosylated hemoglobin level among patients with type 2 diabetes was 1.15 (95% CI, 1.11 to 1.20) for all-cause mortality, 1.17 (95% CI, 1.12 to 1.23) for cardiovascular disease, 1.15 (95% CI, 1.10 to 1.20) for coronary heart disease, 1.11 (95% CI, 1.05 to 1.18) for heart failure, 1.11 (95% CI, 1.06 to 1.17) for stroke, and 1.29 (95% CI, 1.18 to 1.40) for peripheral arterial disease, respectively. In addition, a positive dose-response trend existed between glycosylated hemoglobin level and cardiovascular outcomes.

Conclusions/Significance

Chronic hyperglycemia is associated with an increased risk for cardiovascular outcomes and all-cause mortality among patients with type 2 diabetes, likely independently from other conventional risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号