首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mTOR complex 2 (mTORC2) signaling is upregulated in multiple types of human cancer, but the molecular mechanisms underlying its activation and regulation remain elusive. Here, we show that microRNA-mediated upregulation of Rictor, an mTORC2-specific component, contributes to tumor progression. Rictor is upregulated via the repression of the miR-424/503 cluster in human prostate and colon cancer cell lines that harbor c-Src upregulation and in Src-transformed cells. The tumorigenicity and invasive activity of these cells were suppressed by re-expression of miR-424/503. Rictor upregulation promotes formation of mTORC2 and induces activation of mTORC2, resulting in promotion of tumor growth and invasion. Furthermore, downregulation of miR-424/503 is associated with Rictor upregulation in colon cancer tissues. These findings suggest that the miR-424/503–Rictor pathway plays a crucial role in tumor progression.  相似文献   

2.

Background

Animals models have played an important role in enhancing our understanding of the pathogenesis of pulmonary arterial hypertension (PAH). Dysregulation of the profile of microRNAs (miRNAs) has been demonstrated in human tissues from PAH patients and in animal models. In this study, we measured miRNA levels in the monocrotaline (MCT) rat model of PAH and examined whether blocking a specific dysregulated miRNA not previously reported in this model, attenuated PAH. We also evaluated changes in miRNA expression in lung specimens from MCT PAH rats overexpressing human prostacyclin synthase, which has been shown to attenuate MCT PAH.

Methods

Expression levels of a panel of miRNAs were measured in MCT-PAH rats as compared to naïve (saline) control rats. Subsequently, MCT PAH rats were injected with a specific inhibitor (antagomiR) for miR-223 (A223) or a nonspecific control oligonucleotide (A-control) 4 days after MCT administration, then weekly. Three weeks later, RV systolic pressure and RV mass were measured. Total RNA, isolated from the lungs, microdissected pulmonary arteries, and right ventricle, was reverse transcribed and real-time quantitative PCR was performed. MiRNA levels were also measured in RNA isolated from paraffin sections of MCT-PAH rats overexpressing prostacyclin synthase.

Results

MiRs 17, 21, and 223 were consistently upregulated, whereas miRs 126, 145, 150, 204, 424, and 503 were downregulated in MCT PAH as compared to vehicle control. A223 significantly reduced levels of miR-223 in PA and lungs of MCT PAH rats as compared to levels measured in A-control or control MCT PAH rats, but A223 did not attenuate MCT PAH. Right ventricular mass and right ventricular systolic pressure in rats treated with A223 were not different from values in A-control or MCT PAH rats. In contrast, analysis of total RNA from lung specimens of MCT PAH rats overexpressing human prostacyclin synthase (hPGIS) demonstrated reversal of MCT-induced upregulation of miRs 17, 21, and 223 and an increase in levels of miR-424 and miR-503. Reduction in bone morphogenetic receptor 2 (BMPR2) messenger (m)RNA expression was not altered by A223, whereas human prostacyclin synthase overexpression restored BMPR2 mRNA to levels in MCT PAH to levels measured in naive controls.

Conclusions

Inhibition of miR-223 did not attenuate MCT PAH, whereas human prostacyclin synthase overexpression restored miRNA levels in MCT PAH to levels detected in naïve rats. These data may establish a paradigm linking attenuation of PAH to restoration of BMPR2 signaling.  相似文献   

3.
4.
5.
6.
目的:探讨低氧时人肺动脉平滑肌细胞(HPASMC)和人肺动脉内皮细胞(HPAEC)的高迁移率族蛋白1(HMGB1)及相关受体和炎症因子表达,并检测HMGB1对两种细胞增殖、迁移活性的影响。方法:低氧(1%氧浓度,Hypoxia组)及常氧(Control组)条件下培养HPASMC和HPAEC,RealTime-PCR检测两种细胞HMGB1、TLR2、TLR4、TLR9、RAGE、CD24、IL-6 、TNF-a和CXCL8 mRNA等受体和炎性因子的表达。MTS法观察不同浓度HMGB1对HPASMC和HPAEC增殖的影响;划痕法观察HMGB1对HPASMC和HPAEC迁移的影响。结果:Hypoxia组HPASMC、HPAEC中HMGB1及RAGE mRNA表达量较Control 组明显升高(P<0.05及0.01);Hypoxia组HPAEC中CD24及HPASMC中IL-6 mRNA表达明显增高(P均<0.05)。MTS结果显示在345 pmol/L 剂量下 HMGB1明显抑制HPAEC的增殖(P<0.01),而对HPASMC增殖无影响。划痕实验示HMGB1对HPASMC和HPAEC迁移无明显影响。结论:低氧诱导HPAEC、HPASMC 产生HMGB1;HMGB1通过抑制HPAEC增殖引起内皮屏障功能障碍;而低氧进一步刺激HPASMC产生炎症因子。  相似文献   

7.
Previous studies indicate that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), a novel suppressor of progression in certain cancers, is down-regulated in tongue squamous cell carcinoma (TSCC). However, the role of this factor as an upstream regulator in TSCC cells remains to be elucidated. The present study was designed to elucidate whether TGFBR3 gene expression is regulated by two microRNA molecules, miR-19a and miR-424. The study also aimed to determine if these microRNAs promote migration of CAL-27 human oral squamous cells. Immunohistochemistry (IHC) and western blot analyses demonstrated that TGFBR3 protein levels were dramatically down-regulated in clinical TSCC specimens. Conversely, bioinformatics analyses and qRT-PCR results confirmed that both miR-19a and miR-424 were markedly up-regulated in clinical TSCC specimens. In this study, we observed that transfection of a TGFBR3-containing plasmid dramatically inhibited epithelial-to-mesenchymal transition (EMT) and migration in CAL-27 cells. Co-immunoprecipitation analyses also revealed that TGFBR3 forms a complex with the β-arrestin 2 scaffolding protein and IκBα. Furthermore, overexpression of TGFBR3 decreased p-p65 expression and increased IκBα expression; these effects were subsequently abolished following knockdown of β-arrestin 2. Moreover, over-expression of miR-19a and miR-424 promoted migration and EMT in CAL-27 cells. We also observed that the promotion of EMT by miR-19a and miR-424 was mediated by the inhibition of TGFBR3. Our study provides evidence that miR-19a and miR-424 play important roles in the development of TSCC. These results expand our understanding of TGFBR3 gene expression and regulatory mechanisms pertaining to miRNAs.  相似文献   

8.
9.
MiR-424 plays an important role via promoting the monocytic differentiation in many human leukemia cell lines. Here, we report that miR-424 decreased miR-125b expression to 36 % by directly targeting caudal type homeobox 2. However, miR-424 also decreased expression of Fes, PU.1 and colony-stimulating factor receptor (MCSFR). As Fes, PU.1 and MCSFR were down-regulated by over-expression of miR-125b (unpublished work), a similar effect of miR-424 and Fes siRNA on CD64, Egr-1, Egr-2 and CEBPA indicates that Fes may be an important downstream target of miR-424. We hypothesize that miR-424 promotes monocytic differentiation by regulating other critical factors and miR-424 has high affinity for these factors. For the first time, the molecular mechanism of miR-424 during monocytic differentiation of U937 cells has been elucidated in this study.  相似文献   

10.
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of microRNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Further investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpression of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1.  相似文献   

11.
12.
An accumulated evidence supports that MicroRNAs (miRNAs) have shown a prominent role in pathological processes and different tumor onset. However, to date, the potential functional roles and molecular mechanisms by how microRNA-424-5p(miR-424-5p) affects cancer cell proliferation are greatly unclear, especially in epithelial ovarian cancer(EOC).In this study, we demonstrated that miR-424-5p was significantly down-regulated in EOC tissues and cell lines. The level of miR-424-5p was negatively correlated with tumor size, TNM stage, pathological grade, lymphatic metastasis of EOC. Restoring miR-424-5p expression in EOC cells dramatically suppressed cell proliferation and caused an accumulation of cells in G1 phase, and thus contributed to better prognosis of EOC patients. Mechanistically, miR-424-5p inhibits CCNE1 expression through targeting CCNE1 3′UTR, and subsequent arrest cell cycle in G1/G0 phase by inhibiting E2F1-pRb pathway. This study revealed functional and mechanistic links between miR-424-5p and CCNE1 in the progression of EOC and provide an important insight into that miR-424-5p may serve as a therapeutic target in EOC.  相似文献   

13.
Although numerous miRNAs are reported to contribute to the carcinogenesis of malignant tumor, the specific role of miR-424 in endometrial carcinoma is seldom reported. To explore the effect of miR-424 on epithelial-mesenchymal transition and its underlying mechanism, we detected miR-424 expression in endometrial carcinoma tissue and cells. We found that miR-424 was significantly downregulated in endometrial carcinoma tissues and cells, especially in HEC-1B cells. To perform the functional analysis, we transfected HEC-1B with miR-424-mi, miR-424-inh, mi-control, and inh-control, respectively. We found that overexpression of miR-424 significantly decreases cell proliferation and migration, accompanied with the increased E-cadherin/Vimentin expression and the transition of mesenchymal to epithelial cell phenotype. We identified that insulin-like growth factor-1 receptor (IGF-1R) was a potential target of miR-424 by computational analysis followed by luciferase reporter assays. Of note, we found that the downregulation of miR-424 in HEC-1B cells enhanced endogenous IGF-1R expression. Further mechanistic analysis revealed that forced expression of IGF-1R in miR-424-mim transfected cells remedied the weakened migration resulting from overexpression of IGF-1R. Taken together, the results of the current study demonstrated that miR-424 was a tumor suppressor for endometrial carcinoma and a favorable factor against tumor progression through targeting IGF-1R, thus providing a target for the treatment of endometrial carcinoma.  相似文献   

14.
Deregulated microRNAs and their roles in tumorigenesis have attracted much attention in recent years. Although miR-503 was shown to be important in tumorigenesis, its role in osteosarcoma remains unknown. In this study, we focused on the expression and mechanisms of miR-503 in osteosarcoma development. We found that miR-503 was down-regulated in osteosarcoma cell lines and primary tumor samples, and the restoration of miR-503 reduced cell proliferation, migration and invasion. Low level of miR-503 in patients with osteosarcoma was associated with considerably shortened disease-free survival. Furthermore, bioinformatic prediction and experimental validation revealed that the anti-tumor effect of miR-503 was probably exerted through targeting and repressing of L1CAM expression. L1CAM was up-regulated in osteosarcoma cell lines and primary tumor samples and the expression level of L1CAM were negatively correlated with miR-503 levels in osteosarcoma tissues. Collectively, our data identify the important roles of miR-503 in osteosarcoma pathogenesis, indicating its potential application in cancer therapy.  相似文献   

15.
Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF) has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cell (CSC) functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s) by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC) cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.  相似文献   

16.
17.
18.
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.  相似文献   

19.
20.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is increasing in frequency in the U.S. The major reason for the low postoperative survival rate of HCC is widespread intrahepatic metastasis or invasion, and activation of TGFβ signaling is associated with the invasive phenotype. This study aims at determining the novel function of miR-127 in modulating HCC migration. Overexpression of miR-127 inhibits HCC cell migration, invasion and tumor growth in nude mice. MiR-127 directly represses matrix metalloproteinase 13 (MMP13) 3′UTR activity and protein expression, and diminishes MMP13/TGFβ-induced HCC migration. In turn, TGFβ decreases miR-127 expression by enhancing c-Jun-mediated inhibition of miR-127 promoter activity. In contrast, p53 transactivates miR-127 promoter and induces miR-127 expression, which is antagonized by c-Jun. The inhibition of miR-127 by c-Jun is through TGFβ-mediated ERK and JNK pathways. The lower miR-127 expression shows a negative correlation with the higher MMP13 expression in a subset of human HCC specimens. This is the first report elucidating a feedback regulation between miR-127 and the TGFβ/c-Jun cascade in HCC migration via MMP13 that involves a crosstalk between the oncogene c-Jun and tumor suppressor p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号