首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3−/− mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3+/+ cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3−/− epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3−/− cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.  相似文献   

2.
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.  相似文献   

3.

Background & aims

TGFβ superfamily member Activin-A is a multifunctional hormone/cytokine expressed in multiple tissues and cells, where it regulates cellular differentiation, proliferation, inflammation and tissue architecture. High activin-A levels have been reported in alcoholic cirrhosis and non-alcoholic steatohepatitis (NASH). Our aim was to identify the cell types involved in the fibrotic processes induced by activin-A in liver and verify the liver diseases that this molecule can be found increased.

Methods

We studied the effect of activin-A on mouse primary Kupffer cells (KCs) and Hepatic Stellate cells (HSCs) and the levels of activin-A and its inhibitor follistatin in the serum of patients from a large panel of liver diseases.

Results

Activin-A is expressed by mouse hepatocytes, HSCs and Liver Sinusoid Endothelial cells but not KCs. Each cell type expresses different activin receptor combinations. HSCs are unresponsive to activin-A due to downregulation/desensitization of type-II activin receptors, while KCs respond by increasing the expression/production of TNFα και TGFβ1. In the presence of KCs or conditioned medium from activin-A treated KCs, HSCs switch to a profibrogenic phenotype, including increased collagen and αSMA expression and migratory capacity. Incubation of activin-A treated KC conditioned medium with antibodies against TNFα and TGFβ1 partially blocks its capacity to activate HSCs. Only patients with alcoholic liver diseases and NASH cirrhosis have significantly higher activin-A levels and activin-A/follistatin ratio.

Conclusions

Activin-A may induce fibrosis in NASH and alcoholic cirrhosis via activation of KCs to express pro-inflammatory molecules that promote HSC-dependent fibrogenesis and could be a target for future anti-fibrotic therapies.  相似文献   

4.
The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.  相似文献   

5.
6.
7.
The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.  相似文献   

8.
9.
10.
The effects of TGF1 on cell cycle events in a rat liver derived epithelial cell line (BL9) and in two in vitro transformants of this line were studied by flow cytometry. Using either ethidium bromide staining or the incorporation of bromodeoxyuridine to evaluate DNA synthesis it was shown that TGF1 prevented the entry of G0/G1 phase BL9 cells into S phase. TGF1 did not exert its inhibitory effect(s) on DNA synthesis by the modulation of early events in the cell cycle. The tumorigenic transformed BL9 cell lines gave contrasting responses to the effects of TGF1. DNA synthesis in a BL9 cell line derived by transfection with an active N-ras oncogene was unaffected by TFG1 and thus appeared refractory to its growth controlling effects. On the other hand cells from a BL9 cell line derived by in vitro transformation with activated aflatoxin B1 retained their sensitivity to the effects of TGF1. Thus the loss of the inhibitory effect of TGF1 on DNA synthesis is not obligatory for the malignant transformation of rat liver epithelial cells.Abbreviations TGF1 transforming growth factor 1 - BSA bovine serum albumin - FBS foetal bovine serum - BrdUrd bromodeoxyuridine - PI propidium iodide - PBS phosphate buffered saline  相似文献   

11.
12.
13.
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.  相似文献   

14.
Stress-inducing agents, including oxidative stress, generate the sphingolipid mediators ceramide (Cer) and sphingosine-1-phosphate (S1P) that are involved in stress-induced cellular responses. The two redox-sensitive neutral sphingomyelinase-2 (nSMase2) and sphingosine kinase-1 (SK1) participate in transducing stress signaling to ceramide and S1P, respectively; however, whether these key enzymes are coordinately regulated is not known. We investigated whether a signaling link coordinates nSMase2 and SK1 activation by H2O2. In mesenchymal cells, H2O2 elicits a dose-dependent biphasic effect, mitogenic at low concentration (5 μM), and anti-proliferative and toxic at high concentration (100 μM).  相似文献   

15.
Linarin, a natural occurring flavanol glycoside derived from Mentha arvensis and Buddleja davidii is known to have anti-acetylcholinesterase effects. The present study intended to explore the neuroprotective effects of linarin against Aβ(25-35)-induced neurotoxicity with cultured rat pheochromocytoma cells (PC12 cells) and the possible mechanisms involved. For this purpose, PC12 cells were cultured and exposed to 30 μM Aβ(25-35) in the absence or presence of linarin (0.1, 1.0 and 10 μM). In addition, the potential contribution of the PI3K/Akt neuroprotective pathway in linarin-mediated protection against Aβ(25-35)-induced neurotoxicity was also investigated. The results showed that linarin dose-dependently increased cell viability and reduced the number of apoptotic cells as measured by MTT assay, Annexin-V/PI staining, JC-1 staining and caspase-3 activity assay. Linarin could also inhibit acetylcholinesterase activity induced by Aβ(25-35) in PC12 cells. Further study revealed that linarin induced the phosphorylation of Akt dose-dependently. Treatment of PC12 cells with the PI3K inhibitor LY294002 attenuated the protective effects of linarin. Furthermore, linarin also stimulated phosphorylation of glycogen synthase kinase-3β (GSK-3β), a downstream target of PI3K/Akt. Moreover, the expression of the anti-apoptotic protein Bcl-2 was also increased by linarin treatment. These results suggest that linarin prevents Aβ(25-35)-induced neurotoxicity through the activation of PI3K/Akt, which subsequently inhibits GSK-3β and up-regulates Bcl-2. These findings raise the possibility that linarin may be a potent therapeutic compound against Alzheimer's disease acting through both acetylcholinesterase inhibition and neuroprotection.  相似文献   

16.
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer.  相似文献   

17.
Long non-coding RNAs (IncRNAs) have been proposed to play pivotal roles in the tumorigenesis of various malignant tumors.Previous studies have found that IncRNA...  相似文献   

18.
Previous studies have shown that high glucose stimulates renal SREBP-1 gene expression and increases renal tubular cells lipid metabolism, however, the mechanisms remain elusive. In the present study we demonstrated that PI3K/Akt pathway was activated in human renal proximal tubular cell line (HKC) exposed to high glucose accompanied with up-regulation of SREBP-1, TGF-β1, lipid droplets deposits and extracellular matrix production. Inhibition of PI3K/Akt pathway by chemical LY294002 or specific short hairpin RNA (shRNA) vector prevented SREBP-1 and TGF-β1 up-regulation, as well as ameliorated HKC cells lipogenesis and extracellular matrix accumulation. These findings indicate that PI3K/Akt pathway potentially mediates high glucose-induced lipogenesis and extracellular matrix accumulation in HKC cells.  相似文献   

19.
Cell-based cartilage resurfacing requires ex vivo expansion of autologous articular chondrocytes. Defined culture conditions minimize expansion-dependent phenotypic alterations but maintenance of the cells' differentiation potential must be carefully assessed. Transforming growth factor β-1 (TGF β-1) positively regulates the expression of several cartilage proteins, but its therapeutic application in damaged cartilage is controversial. Thus we evaluated the phenotypic outcomes of cultured human articular chondrocytes exposed to TGF β-1 during monolayer expansion in a serum-free medium. After five doublings cells were transferred to micromass cultures to assess their chondrogenic differentiation, or replated in osteogenic medium. Immunocytostainings of micromasses of TGF-expanded cells showed loss of aggrecan and type II collagen. Positivity was evidenced for RAGE, IHH, type X collagen and for apoptotic cells, paralleling a reduction of BCL-2 levels, suggesting hypertrophic differentiation. TGF β-1-exposed cells also evidenced increased mRNA levels for bone sialoprotein, osteopontin, matrix metalloproteinase-13, TIMP-3, VEGF and SMAD7, enhanced alkaline phosphatase activity and pyrophosphate availability. Conversely, SMAD3 mRNA and protein contents were reduced. After osteogenic induction, only TGF-expanded cells strongly mineralized and impaired p38 kinase activity, a contributor of chondrocytes' differentiation. To evaluate possible endochondral ossification progression, we seeded the chondrocytes on hydroxyapatite scaffolds, subsequently implanted in an in vivo ectopic setting, but cells failed to reach overt ossification; nonetheless, constructs seeded with TGF-exposed cells displayed blood vessels of the host vascular supply with enlarged diameters, suggestive of vascular remodeling, as in bone growth. Thus TGF-exposure during articular chondrocytes expansion induces a phenotype switch to hypertrophy, an undesirable effect for cells possibly intended for tissue-engineered cartilage repair.  相似文献   

20.
Though the G1 checkpoint in mammalian cells has been known for decades, the molecular targets that prevent S-phase entry remain unknown. Mimosine is a rare plant amino acid that arrests the cell cycle in the G1 phase before entry into S phase. Here, we show that mimosine interrupts the binding of Ctf4 to chromatin, which is essential for the initiation of DNA replication in HeLa cells, and this effect is mediated by the Hif-1α-dependent increase in the level of p27. Depletion of Hif-1α results in an increased binding of Ctf4 to chromatin and the entry of cells into S phase even in the presence of mimosine. These results suggest that the binding of Ctf4 to chromatin is the target of the Hif-1α-dependent checkpoint pathway for cell cycle arrest in G1 phase. Although we observed Hif-1α-dependent arrest in mimosine-treated cells, it is possible that Ctf4 may act as a common target for G1 arrest in various other checkpoint pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号