首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial. Recent field studies found hybrids to be more resistant than mice from parental subspecies against infections with pinworms and protozoans (Eimeria spp.). We argue that the field studies underlying the contradictory impression of hybrid susceptibility have limitations in sample size, statistical analysis and scope, focusing only on macroparasites. We suggest that weighted evidence from field studies indicate hybrid resistance. Health is a fitness component through which resistance can modulate overall fitness. Resistance, however, should not be extrapolated directly to a fitness effect, as the relationship between resistance and health can be modulated by tolerance. In our own recent work, we found that the relationship between health and resistance (tolerance) differs between infections with the related species E. falciformis and E. ferrisi. Health and tolerance need to be assessed directly and the choice of parasite has made this difficult in previous experimental studies of house mice. We discuss how experimental Eimeria spp. infections in hybrid house mice can address resistance, health and tolerance in conjunction.  相似文献   

2.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

3.

Background

The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.

Results

The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.

Conclusions

Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-696) contains supplementary material, which is available to authorized users.  相似文献   

4.
Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.  相似文献   

5.
Two house mouse subspecies occur in Europe, eastern and northern Mus musculus musculus (Mmm) and western and southern Mus musculus domesticus (Mmd). A secondary hybrid zone occurs where their ranges meet, running from Scandinavia to the Black Sea. In this paper, we tested a hypothesis that the apicomplexan protozoan species Cryptosporidium tyzzeri has coevolved with the house mouse. More specifically, we assessed to what extent the evolution of this parasite mirrors divergence of the two subspecies. In order to test this hypothesis, we analysed sequence variation at five genes (ssrRNA, Cryptosporidium oocyst wall protein (COWP), thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1), actin and gp60) in C. tyzzeri isolates from Mmd and Mmm sampled along a transect across the hybrid zone from the Czech Republic to Germany. Mmd samples were supplemented with mice from New Zealand. We found two distinct isolates of C. tyzzeri, each occurring exclusively in one of the mouse subspecies (C. tyzzeri-Mmm and C. tyzzeri-Mmd). In addition to genetic differentiation, oocysts of the C. tyzzeri-Mmd subtype (mean: 4.24 × 3.69 μm) were significantly smaller than oocysts of C. tyzzeri-Mmm (mean: 4.49 × 3.90 μm). Mmm and Mmd were susceptible to experimental infection with both C. tyzzeri subtypes; however, the subtypes were not infective for the rodent species Meriones unguiculatus, Mastomys coucha, Apodemus flavicollis or Cavia porcellus. Overall, our results support the hypothesis that C. tyzzeri is coevolving with Mmm and Mmd.  相似文献   

6.
The occurrence of Cryptosporidium oocysts in feces from a population of wild eastern grey kangaroos inhabiting a protected watershed in Sydney, Australia, was investigated. Over a 2-year period, Cryptosporidium oocysts were detected in 239 of the 3,557 (6.7%) eastern grey kangaroo fecal samples tested by using a combined immunomagnetic separation and flow cytometric technique. The prevalence of Cryptosporidium in this host population was estimated to range from 0.32% to 28.5%, with peaks occurring during the autumn months. Oocyst shedding intensity ranged from below 20 oocysts/g feces to 2.0 × 106 oocysts/g feces, and shedding did not appear to be associated with diarrhea. Although morphologically similar to the human-infective Cryptosporidium hominis and the Cryptosporidium parvum “bovine” genotype oocysts, the oocysts isolated from kangaroo feces were identified as the Cryptosporidium “marsupial” genotype I or “marsupial” genotype II. Kangaroos are the predominant large mammal inhabiting Australian watersheds and are potentially a significant source of Cryptosporidium contamination of drinking water reservoirs. However, this host population was predominantly shedding the marsupial-derived genotypes, which to date have been identified only in marsupial host species.  相似文献   

7.
This study characterises the extent of the susceptibility to parasites (first demonstrated with helminths) of hybrids between Mus musculus domesticus and Mus musculus musculus. Experimental infections with Trypanosoma musculi of M. m. domesticus, M. m. musculus and their natural hybrids have been performed to compare their level of resistance/susceptibility. It appears that contrary to the results with helminths, hybrid mice present the same level of resistance/susceptibility to the trypanosome as M. m. musculus and M. m. domesticus individuals. This result is interpreted in the light of the modalities of host parasite interactions and leads us to hypothesise on the role of parasitism in the evolution of the house mouse hybrid zone.  相似文献   

8.
Stockdale P. G. H., Stockdale M. J., Rickard M. D. and Mitchell G. F. 1985. Mouse strain variation and effects of oocyst dose in infection of mice with Eimeria falciformis, a coccidian parasite of the large intestine, International Journal for Parasitology15: 447–452. Five inbred strains of mice and three hypothymic (nude) strains were infected orally with different doses of E. falciförmis oocysts. After resolution of primary infection as determined by faecal oocyst output, mice were challenged orally with a second dose of E. falciformis. Amongst the intact mice, BALB/c proved the most resistant to primary infection, while C3H/He mice were most susceptible, in terms of faecal oocyst production. Resistance was far more dramatic in BALB/c mice given high numbers of challenge oocysts. In terms of mortality at high oocyst doses, CBA/H were the most susceptible. All of the strains of mice were highly resistant to reinfection. In the case of nude mice, BALB/c. nu/nu were more susceptible than CBA/H.nu/nu or C57BL/6.nu/nu both in terms of faecal oocyst production and mortality. Thus the most resistant inbred mouse strain (BALB/c) is the least resistant in the absence of T cells. Unlike intact mice, nude mice showed no resistance to reinfection, this result being in line with previous work on this and other Eimeria spp. in nude mice.  相似文献   

9.
SYNOPSIS. Eimeria vermiformis sp. n. and E. papillata sp. n. are described from the mouse Mus musculus. The sporulated oocysts of E. vermiformis are 18–26 by 15–21 μ (mean 23.1 by 18.4 μ); its sporocysts are 11–14 by 6–10 μ (mean 12.8 by 7.9 p). The sporulated oocysts of E. papillata are 18–26 by 16–24 μ (mean 22.4 by 19.2 μ); its sporocysts are 10–13 by 6–9 μ (mean 11.2 by 8.0 μ). A substiedal body is present in E. papillata sporocysts. Patent infections were produced in white laboratory mice with both species. Fourteen species of Eimeria have now been described from the genus Mus.  相似文献   

10.
Treatment of the host (Mus musculus, Gallus domesticus) with cyclosporin A during infection with Eimeria vermiformis or E. mitis resulted in a reduction in the numbers of oocysts passed in the feces and/or a delay in patency. The general immunosuppressive effects of the treatment were confirmed in chickens by monitoring their antibody responses to human erythrocytes and lymphoproliferative responses to phytohemagglutinin. Nevertheless, mice and chickens treated with cyclosporin A during a primary infection with E. vermiformis or E. mitis, respectively, were immune to subsequent challenge with these organisms. Thus, cyclosporin A did not interfere with priming. The antiparasite effect of the drug did not allow an evaluation of its effect on established immunity to the coccidia when it was administered at the time of challenge. In an exceptional treated chicken, however, delayed patency of the challenge infection was followed by the production of a number of oocysts similar to that found in unprimed animals. This suggests that the mechanisms of immunity to challenge may be susceptible to disruption by cyclosporin A.  相似文献   

11.
Natural selection should strongly favour hosts that can protect themselves against parasites. Most studies on animals so far have focused on resistance, a series of mechanisms through which hosts prevent infection, reduce parasite growth or clear infection. However, animals may instead evolve tolerance, a defence mechanism by which hosts do not reduce parasite infection or growth, but instead alleviate the negative fitness consequences of such infection and growth. Here, we studied genetic variation in resistance and tolerance in the monarch butterfly (Danaus plexippus) to its naturally occurring protozoan parasite, Ophryocystis elektroscirrha. We exposed 560 monarch larvae of 19 different family lines to one of five different parasite inoculation doses (0, 1, 5, 10 and 100 infective spores) to create a range of parasite loads in infected butterflies. We then used two proxies of host fitness (adult lifespan and body mass) to quantify: (i) qualitative resistance (the ability to prevent infection; also known as avoidance or anti-infection resistance); (ii) quantitative resistance (the ability to limit parasite growth upon infection; also known as control or anti-growth resistance); and (iii) tolerance (the ability to maintain fitness with increasing parasite infection intensity). We found significant differences among host families in qualitative and quantitative resistance, indicating genetic variation in resistance. However, we found no genetic variation in tolerance. This may indicate that all butterflies in our studied population have evolved maximum tolerance, as predicted by some theoretical models.  相似文献   

12.
13.
14.
Leishmania infantum is a protozoan parasite that is phagocytized by human macrophages. The host macrophages kill the parasite by generating oxidative compounds that induce DNA damage. We have identified, purified and biochemically characterized a DNA polymerase θ from L. infantum (LiPolθ), demonstrating that it is a DNA-dependent DNA polymerase involved in translesion synthesis of 8oxoG, abasic sites and thymine glycol lesions. Stably transfected L. infantum parasites expressing LiPolθ were significantly more resistant to oxidative and interstrand cross-linking agents, e.g. hydrogen peroxide, cisplatin and mitomycin C. Moreover, LiPolθ-overexpressing parasites showed an increased infectivity toward its natural macrophage host. Therefore, we propose that LiPolθ is a translesion synthesis polymerase involved in parasite DNA damage tolerance, to confer resistance against macrophage aggression.  相似文献   

15.
Genetic variation in resistance against parasite infections is a predominant feature in host–parasite systems. However, mechanisms maintaining genetic polymorphism in resistance in natural host populations are generally poorly known. We explored whether differences in natural infection pressure between resource‐based morphs of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance profiles. We experimentally exposed offspring of two morphs from Lake Þingvallavatn (Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr (“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infecting the eye humor. We found that there were no differences in resistance between the morphs, but clear differences among families within each morph. Moreover, we found suggestive evidence of resistance of offspring within families being positively correlated with the parasite load of the father, but not with that of the mother. Our results suggest that the inherited basis of parasite resistance in this system is likely to be related to variation among host individuals within each morph rather than ecological factors driving divergent resistance profiles at morph level. Overall, this may have implications for evolution of resistance through processes such as sexual selection.  相似文献   

16.
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.  相似文献   

17.
Immunity to the coccidial parasite, Eimeria nieschulzi, in CD-F rats was assessed by the numbers of oocysts shed in relation to the time after inoculation. Intravenous injections of syngeneic thoracic duct lymphocytes (TDL) from immunized rats elicited various degrees of adoptive immunity against primary infections of E. nieschulzi. Of the 16 rats injected with 109 sensitized TDL, 7 were totally immune to a subsequent challenge by the parasite. This number of injected TDL also raised the serum antibody level to that of immune rats. Contact with immune TDL was deleterious to sporozoites of E. nieschulzi in vitro and produced immunocytoadherence of parasite to cell.  相似文献   

18.
Genome sequences are essential tools for comparative and mutational analyses. Here we present the short read sequence of mouse chromosome 17 from the Mus musculus domesticus derived strain A/J, and the Mus musculus castaneus derived strain CAST/Ei. We describe approaches for the accurate identification of nucleotide and structural variation in the genomes of vertebrate experimental organisms, and show how these techniques can be applied to help prioritize candidate genes within quantitative trait loci.  相似文献   

19.
Phylogenetic analyses for 10 rodent Eimeria species from different host genera based on plastid ORF470 and nuclear 18S rDNA sequences were done to infer the evolutionary relationships of these rodent Eimeria species and their correlation to morphology and host specificity. The phylogenies based on both data sets clearly grouped the 10 rodent Eimeria species into two major lineages, which reflect more their morphological differences than host specificity. Species in lineage A have spheroidal to subspheroidal sporulated oocysts, are similar in size (18-29 x 17-23; xbar = 22 x 20 microm), have an oocyst residuum and one-two polar granules; these include Eimeria albigulae (Neotoma), Eimeria arizonensis (Peromyscus, Reithrodontomys), Eimeria onychomysis (Onychomys) and Eimeria reedi (Perognathus). Species in lineage B, including Eimeria falciformis (Mus), Eimeria langebarteli (Reithrodontomys), Eimeria nieschulzi (Rattus), Eimeria papillata (Mus), Eimeria separata (Rattus) and Eimeria sevilletensis (Onychomys) have different shapes (ovoid, ellipsoid, elongated ellipsoid, etc.), differ greatly in size (10-27 x 9-24; xbar = 19 x 16 microm) and all lack an oocyst residuum. Thus, The oocyst residuum was the most determinant feature that differentiated the two lineages. The accession numbers of ORF470 of E. albigulae, E. arizonensis, E. falciformis, E. nieschulzi, E. onychomysis, E. papillata, E. reedi, E. separata, E. sevilletensis, E. langebarteli are AF311630-AF311639 and 18S rDNA of E. langebarteli, E. papillata, E. reedi, E. separata, E. sevilletensis are AF311640-AF311644.  相似文献   

20.
Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level, involving the widespread intracellular protozoan pathogen Toxoplasma gondii and one of its most important natural hosts, the house mouse (Mus musculus). Natural polymorphism in virulence of Eurasian T. gondii strains for mice has been correlated in genetic screens with the expression of polymorphic rhoptry kinases (ROP kinases) secreted into the host cell during infection. We show that the molecular targets of the virulent allelic form of ROP18 kinase are members of a family of cellular GTPases, the interferon-inducible IRG (immunity-related GTPase) proteins, known from earlier work to be essential resistance factors in mice against avirulent strains of T. gondii. Virulent T. gondii strain ROP18 kinase phosphorylates several mouse IRG proteins. We show that the parasite kinase phosphorylates host Irga6 at two threonines in the nucleotide-binding domain, biochemically inactivating the GTPase and inhibiting its accumulation and action at the T. gondii parasitophorous vacuole membrane. Our analysis identifies the conformationally active switch I region of the GTP-binding site as an Achilles' heel of the IRG protein pathogen-resistance mechanism. The polymorphism of ROP18 in natural T. gondii populations indicates the existence of a dynamic, rapidly evolving ecological relationship between parasite virulence factors and host resistance factors. This system should be unusually fruitful for analysis at both ecological and molecular levels since both T. gondii and the mouse are widespread and abundant in the wild and are well-established model species with excellent analytical tools available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号