首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.  相似文献   

2.
The syndecans, cell surface heparan sulfate proteoglycans (HSPGs), bind numerous ligands via their HS glycosaminoglycan chains. The response to this binding is flavored by the identity of the core protein that bears the HS chains. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domain and extracellular domains for which important activities are slowly emerging. These protein domains, which will be the focus of this review, localize the syndecan to sites at the cell surface during development where they collaborate with other receptors to regulate signaling and cytoskeletal organization.  相似文献   

3.
B A Irving  A Weiss 《Cell》1991,64(5):891-901
The function of the T cell antigen receptor (TCR) invariant chains, CD3 gamma, delta, epsilon, and zeta, is poorly understood. Evidence suggests that CD3 couples receptor ligand binding to intracellular signaling events. To examine the role of the CD3 zeta chain in TCR-mediated signal transduction, a chimeric protein linking the extracellular and transmembrane domains of CD8 to the cytoplasmic domain of the zeta chain was constructed. The CD8/zeta chimera is expressed independently of the TCR and is capable of transducing signals that, by criteria of early and late activation, are indistinguishable from those generated by the intact TCR. These data indicate that CD8/zeta can activate the appropriate signal transduction pathways in the absence of CD3 gamma, delta, and epsilon, and suggest that the role of CD3 zeta is to couple the TCR to intracellular signal transduction mechanisms.  相似文献   

4.
CD38 is a type II transmembrane glycoprotein that is expressed by many cell types including lymphocytes. Signaling through CD38 on B lymphocytes can mediate B cell activation, proliferation, and cytokine secretion. Additionally, coligation of CD38 and the B cell Ag receptor can greatly augment B cell Ag receptor responses. Interestingly, the extracellular domain of CD38 catalyzes the conversion of NAD+ into nicotinamide, ADP-ribose (ADPR), and cyclic ADPR (cADPR). cADPR can induce intracellular calcium release in an inositol trisphosphate-independent manner and has been hypothesized to regulate CD38-mediated signaling. We demonstrate that replacement of the cytoplasmic tail and the transmembrane domains of CD38 did not impair CD38 signaling, coreceptor activity, or enzyme activity. In contrast, independent point mutations in the extracellular domain of CD38 dramatically impaired signal transduction. However, no correlation could be found between CD38-mediated signaling and the capacity of CD38 to catalyze an enzyme reaction and produce cADPR, ADPR, and/or nicotinamide. Instead, we propose that CD38 signaling and coreceptor activity in vitro are regulated by conformational changes induced in the extracellular domain upon ligand/substrate binding, rather than on actual turnover or generation of products.  相似文献   

5.
Syndecans are transmembrane proteoglycans expressed on adherent cells. They are a family of four proteins, which participate in cell-matrix adhesion, the regulation of growth factors (FGFs, VEGF, HGF) binding and signaling. The extracellular domain of syndecans contains heparan sulfate and chondroitin sulfate glycosaminoglycan chains. Syndecans have transmembrane region and a short cytoplasmic domain. The cytoplasmic domain attaches activated protein kinase Calpha, phosphatidyl-inositol-4,5-bisphosphate, syntenin, beta-catenin and many others molecules. Syndecans bind numerous ligands, which are present in extracellular matrix: growth factors, enzymes, extracellular matrix molecules (fibronectin, laminin). They form connections with actin cytoskeleton. The changes in syndecan expression influence on cell adhesion and migration, structure of focal contacts and cytoskeleton. Syndecans participate in cell differentiation and tissue regeneration.  相似文献   

6.
Focal adhesion formation in fibroblasts results from complex transmembrane signaling processes initiated by extracellular matrix molecules. Although a role for integrins with attendant tyrosine kinases has been established, there is evidence that cell surface heparan sulfate proteoglycans (HSPGs) are also involved with an associated role of protein kinase C. The identity of the proteoglycan has remained elusive, but we now report that syndecan 4 (ryudocan/amphiglycan) is present in focal adhesions of a number of cell types. Affinity-purified antibodies raised against a unique portion of the cytoplasmic domain of syndecan 4 core protein recognized an HSPG of similar characteristics to those of syndecan 4. These antibodies stained focal adhesions only after cell permeabilization and recognized differing mammalian species. Syndecan 4 was associated with focal adhesions that contained either beta 1 or beta 3 integrin subunits and those that formed on substrates of fibronectin, laminin, vitronectin, or type I collagen. No focal adhesions were found that were vinculin-containing but lacked syndecan 4. In contrast, syndecan 2, whose cytoplasmic domain is closely homologous to syndecan 4, does not appear to be a focal adhesion component. Thus, syndecan 4 represents a new transmembrane focal adhesion component, probably involved in their assembly.  相似文献   

7.
CD147, also known as extracellular matrix metalloproteinase inducer, is a regulator of matrix metalloproteinase production and serves as a signaling receptor for extracellular cyclophilins. Here we demonstrate that the cell surface expression of CD147 is regulated by cyclophilins via the transmembrane domain of CD147. Solution binding experiments demonstrated that the transmembrane domain was both necessary and sufficient for CD147 binding to cyclophilin A (CypA). Treatment with cyclosporin A significantly reduced surface expression of CD147 and of CD8-CD147 fusion protein carrying the extracellular domain of CD8 fused to the transmembrane and cytoplasmic domains of CD147, but did not affect expression of CD8. Peptide binding studies demonstrated specific interaction between CypA and the proline-containing peptide from the CD147 transmembrane domain. Mutation of this proline residue reduced binding of CD147-derived peptides to CypA and also diminished transport of CD147 to the plasma membrane without reducing the total level of CD147 expression. These results suggest involvement of a cyclophilin-related protein in CD147 cell surface expression and provide molecular details for regulation of CD147 trafficking by cyclophilins.  相似文献   

8.
The transforming gene product of avian erythroblastosis virus, v-erbB, is derived from the epidermal growth factor (EGF) receptor but has lost its extracellular ligand-binding domain and was mutated in its cytoplasmic portion, which is thought to be responsible for biological signal generation. We have repaired the deletion of extracellular EGF-binding sequences and investigated the functional consequences of cytoplasmic erbB mutations. Within the resulting EGF receptors, the autophosphorylation activities of the cytoplasmic domains of v-erbB-H and v-erbB-ES4 were fully ligand dependent in intact cells. However, the mitogenic and transforming signaling activities of an EGF receptor carrying v-erbB-ES4 (but not v-erbB-H) cytoplasmic sequences remained ligand independent, whereas those of a receptor with a v-erbB-H cytoplasmic domain were regulated by EGF or transforming growth factor alpha. Thus, structural alterations in the cytoplasmic domain of growth factor receptor tyrosine kinases may induce constitutive signaling activity without autophosphorylation. These findings provide new insight into the mechanism of receptor-mediated signal transduction and suggest a novel alternative for subversion of cellular control mechanisms and proto-oncogene activation.  相似文献   

9.
S Lev  D Givol    Y Yarden 《The EMBO journal》1991,10(3):647-654
The kit protooncogene encodes a transmembrane tyrosine kinase related to the receptors for the platelet derived growth factor (PDGF-R) and the macrophage growth factor (CSF1-R), and was very recently shown to bind a stem cell factor. To compare signal transduction by the kit kinase with signaling by homologous receptors we constructed a chimeric protein composed of the extracellular domain of the epidermal growth factor receptor (EGF-R) and the transmembrane and cytoplasmic domains of kit. We have previously shown that the chimeric receptor transmits potent mitogenic and transforming signals in response to the heterologous ligand. Here we demonstrate that upon ligand binding, the ligand-receptor complex undergoes endocytosis and degradation and induces short- and long-term cellular effects. Examination of the signal transduction pathway revealed that the activated kit kinase strongly associates with phosphatidylinositol 3'-kinase activity and a phosphoprotein of 85 kd. In addition, the ligand-stimulated kit kinase is coupled to modifications of phospholipase C gamma and the Raf1 protein kinase. However, it does not lead to a significant change in the production of inositol phosphate. Comparison of our results with the known signaling pathways of PDGF-R and CSF1-R suggests that each receptor is coupled to a specific combination of signal transducers.  相似文献   

10.
The structure of human syndecan, an integral membrane proteoglycan, has been determined by cloning its full-length cDNA, which codes for the entire 310-amino acid-long core protein, including the NH2-terminal signal peptide. Similar to mouse syndecan (Saunders, S., Jalkanen, M., O'Farrell, S., and Bernfield, M. (1989) J. Cell Biol. 108, 1547-1556), the core protein of human syndecan can be divided into three domains: a matrix-interacting ectodomain containing putative glycosaminoglycan attachment sites, a 25-residue hydrophobic membrane-spanning domain, and a 34-residue cytoplasmic domain. Several interesting conserved structures were revealed by comparing the human syndecan sequence to the murine one. (i) Although the ectodomains are only 70% identical, all putative glycosaminoglycan attachment sites are identical (two of them belong to the consensus sequence SGXG and three others to (E/D)GSG(E/D), as are also (ii) the single putative N-glycosylation site and (iii) the proteinase-sensitive dibasic RK site adjacent to the extracellular face of the transmembrane domain. Furthermore, (iv) the transmembrane domain is 96% identical, as the only change in human syndecan was an alteration of an alanine residue to glycine; and finally, (v) the cytoplasmic domain is 100% identical, including 3 identically located tyrosine residues. Comparison of transmembrane and cytoplasmic domains to a third cell-surface proteoglycan, 48K5 from human lung fibroblasts (Marynen, P., Zhang, J., Cassiman, J., Vanden Berghe, H., and David, C. (1989) J. Biol. Chem. 264, 7017-7024), indicates that the transmembrane and cytoplasmic domains are similar also in this molecule regardless of the presence of a totally nonhomologous ectodomain. Thus, the transmembrane and cytoplasmic domains are unique for these cell-surface proteoglycans, which we propose to be members of a novel gene family of syndecans.  相似文献   

11.
Signaling through hematopoietic cytokine receptors such as the erythropoietin receptor (EpoR) depends on the activation of a receptor-bound Janus kinase (JAK) and tyrosine phosphorylation of the cytoplasmic domain. To visualize the EpoR and elucidate structural requirements coordinating signal transduction, we probed the EpoR by inserting the green fluorescent protein (GFP) at various positions. We show that insertion of GFP in proximity to the transmembrane domain, either in the extracellular or the cytoplasmic domain, results in EpoR-GFP receptors incompetent to elicit biological responses in a factor-dependent cell line or in erythroid progenitor cells. Surprisingly, a receptor harboring GFP insertion in the middle of the cytoplasmic domain, and thereby separating the JAK2 binding site from the tyrosine residues, is capable of supporting signal transduction in response to ligand binding. Comparable with the wild type EpoR, but more efficient than a C-terminal EpoR-GFP fusion, this chimeric receptor promotes the maturation of erythroid progenitor cells and is localized in punctated endosome-like structures. We conclude that the extracellular, transmembrane, and membrane-proximal segment of the cytoplasmic domain form a rigid structural entity whose precise orientation is essential for the initiation of signal transduction, whereas the cytoplasmic domain possesses flexibility in adopting an activated conformation.  相似文献   

12.
Integrins are a family of transmembrane proteins composed of heterodimers of α and β subunits. With their extracellular domain they bind extracellular matrix proteins or other cell surface molecules, and their cytoplasmic domain binds to cytoskeletal and signaling proteins. Thus, they are in an ideal position to transfer information from the extracellular environment to the interior of the cell and vice versa. For several integrin subunits, alternative splicing of mRNA leads to variations in the sequence of both extracellular and cytoplasmic domains. Many integrin splice variants have specific expression patterns, but for some time, functional differences between these variants were not evident. Recent experiments using transfected cell lines and gene targeting of specific splice variants have contributed significantly to our understanding of the function of these splice variants. The results indicate that alternative splicing is a mechanism to subtly regulate the ligand binding and signaling activity of integrins. Bio Essays 21:499–509, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

13.
The integral membrane sensor kinase CitA of Klebsiella pneumoniae is part of a two-component signal transduction system that regulates the transport and metabolism of citrate in response to its environmental concentration. Two-component systems are widely used by bacteria for such adaptive processes, but the stereochemistry of periplasmic ligand binding and the mechanism of signal transduction across the membrane remain poorly understood. The crystal structure of the CitAP periplasmic sensor domain in complex with citrate reveals a PAS fold, a versatile ligand-binding structural motif that has not previously been observed outside the cytoplasm or implicated in the transduction of conformational signals across the membrane. Citrate is bound in a pocket that is shared among many PAS domains but that shows structural variation according to the nature of the bound ligand. In CitAP, some of the citrate contact residues are located in the final strand of the central beta-sheet, which is connected to the C-terminal transmembrane helix. These secondary structure elements thus provide a potential conformational link between the periplasmic ligand binding site and the cytoplasmic signaling domains of the receptor.  相似文献   

14.
Binding of ligands to the extracellular region of the erythrocyte transmembrane protein glycophorin A induces a decrease in membrane deformability. Since the property of membrane deformability is regulated by the skeletal proteins on the cytoplasmic side of the membrane, this suggests that ligand binding may initiate a transmembrane signal. To further study this process, we examined which domains of the extracellular region of glycophorin are involved in signal transduction and whether the cytoplasmic domain of the molecule is necessary for transmitting the signal. Using the ektacytometer, we compared the effect on deformability of four monoclonal antibodies that detect different epitopes on glycophorin A. We found that 9A3 (which recognized the amino terminus of glycophorin) caused a 5.8-fold increase in rigidity, R-10 and 10F7 (which recognized epitopes in the mid-region of the extracellular domain) caused a 10.8-fold increase in rigidity and B14 (which binds to glycophorin close to the membrane) caused a 18-fold increase in rigidity. Further, a direct relationship was observed between the degree of antibody-induced rigidity and the amount of glycophorin A that became associated with the skeletal proteins in a Triton shell assay. In Miltenberger V erythrocytes, which contain a hybrid sialoglycoprotein with no cytoplasmic domain, antibody binding did not induce an increase in rigidity. These results imply that glycophorin A is capable of a modulatable form of transmembrane signaling that is determined by the extracellular domain to which the ligand binds, and the cytoplasmic domain of glycophorin A is crucial for this process.  相似文献   

15.
Receptor-like protein kinases (RLKs) are transmembrane proteins crucial for cell-to-cell and cell-to-environment communications. The extracellular domain of a RLK is responsible for perception of a specific extracellular ligand to trigger a unique intercellular signaling cascade, often via phosphorylation of cellular proteins. The signal is then transduced to the nucleus of a cell where it alters gene expression. There are more than 610 RLKs in Arabidopsis thaliana, only a handful of them have been functionally characterized. This review focuses on recent advances in our understanding of a small group of RLKs named somatic embryogenesis receptor-like protein kinases (SERKs). SERKs act as coreceptors in multiple signaling pathways via their physical interactions with distinct ligand-binding RLKs.  相似文献   

16.
T cell activation requires both specific recognition of the peptide-MHC complex by the TCR and additional signals delivered by costimulatory receptors. We have identified rainbow trout sequences similar to CD28 (rbtCD28) and CTLA4 (rbtCTLA4). rbtCD28 and rbtCTLA4 are composed of an extracellular Ig-superfamily V domain, a transmembrane region, and a cytoplasmic tail. The presence of a conserved ligand binding site within the V domain of both molecules suggests that these receptors likely recognize the fish homologues of the B7 family. The mRNA expression pattern of rbtCD28 and rbtCTLA4 in naive trout is reminiscent to that reported in humans and mice, because rbtCTLA4 expression within trout leukocytes was quickly up-regulated following PHA stimulation and virus infection. The cytoplasmic tail of rbtCD28 possesses a typical motif that is conserved in mammalian costimulatory receptors for signaling purposes. A chimeric receptor made of the extracellular domain of human CD28 fused to the cytoplasmic tail of rbtCD28 promoted TCR-induced IL-2 production in a human T cell line, indicating that rbtCD28 is indeed a positive costimulator. The cytoplasmic tail of rbtCTLA4 lacked obvious signaling motifs and accordingly failed to signal when fused to the huCD28 extracellular domain. Interestingly, rbtCTLA4 and rbtCD28 are not positioned on the same chromosome and thus do not belong to a unique costimulatory cluster as in mammals. Finally, our results raise questions about the origin and evolution of positive and negative costimulation in vertebrate immune systems.  相似文献   

17.
Abstract

Adhesion G-protein-coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell– cell and cell–cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell–cell and cell–matrix interactions during development and morphogenesis, as well as heritable diseases and cancer.  相似文献   

18.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

19.
The syndecan proteoglycans are an ancient class of receptor, bearing heparan sulfate chains that interact with numerous potential ligands including growth factors, morphogens, and extracellular matrix molecules. The single syndecan of invertebrates appears not to have cell adhesion roles, but these have been described for mammalian paralogues, especially syndecan-4. This member is best understood in terms of interactions, signaling, and structure of its cytoplasmic domain. The zebrafish homologue of syndecan-4 has been genetically linked to cell adhesion and migration in zebrafish embryos, but no molecular and cellular studies have been reported. Here it is demonstrated that key functional attributes of syndecan-4 are common to both zebrafish and mammalian homologues. These include glycosaminoglycan substitution, a NXIP motif in the extracellular domain that promotes integrin-mediated cell adhesion, and a transmembrane GXXXG motif that promotes dimer formation. In addition, despite some amino acid substitutions in the cytoplasmic domain, its ability to form twisted clamp dimers is preserved, as revealed by nuclear magnetic resonance spectroscopy. This technique also showed that phosphatidylinositol 4,5-bisphosphate can interact with the zebrafish syndecan-4 cytoplasmic domain, and that the molecule in its entirety supports focal adhesion formation, and complements the murine null cells to restore a normal actin cytoskeleton identically to the rat homologue. Therefore, the cell adhesion properties of syndecan-4 are consistent across the vertebrate spectrum and reflect an early acquisition of specialization after syndecan gene duplication events at the invertebrate/early chordate boundary.  相似文献   

20.
We isolated cDNAs encoding a 115 kd human atrial natriuretic peptide (alpha ANP) receptor (ANP-A receptor) that possesses guanylate cyclase activity, by low-stringency hybridization with sea urchin Arbacia punctulata membrane guanylate cyclase probes. The human ANP-A receptor has a 32 residue signal sequence followed by a 441 residue extracellular domain homologous to the 60 kd ANP-C receptor. A 21 residue transmembrane domain precedes a 568 residue cytoplasmic domain with homology to the protein kinase family and to a subunit of the soluble guanylate cyclase. COS-7 cells transfected with an ANP-A receptor expression vector displayed specific [125I]alpha ANP binding, and exhibited alpha ANP stimulated cGMP production. These data demonstrate a new paradigm of cellular signal transduction where extracellular ligand binding allosterically regulates cyclic nucleotide second-messenger production by a receptor cytoplasmic catalytic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号