首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.  相似文献   

2.
Tumor cell migration is a crucial step in the metastatic cascade, and interruption of this step is considered to be logically effective in preventing tumor metastasis. Lipid rafts, distinct liquid ordered plasma membrane microdomains, have been shown to influence cancer cell migration, but the underlying mechanisms are still not well understood. Here, we report that lipid rafts regulate the dynamics of actin cytoskeleton and focal adhesion in human melanoma cell migration. Disrupting the integrity of lipid rafts with methyl-β cyclodextrin enhances actin stress fiber formation and inhibits focal adhesion disassembly, accompanied with alterations in cell morphology. Furthermore, actin cytoskeleton, rather than microtubules, mediates the lipid raft-dependent focal adhesion disassembly by regulating the dephosphorylation of focal adhesion proteins and the internalization of β3 integrin. We also show that Src–RhoA–Rho kinase signaling pathway is responsible for lipid raft disruption-induced stress fiber formation. Taken together, these observations provide a new mechanism to further explain how lipid rafts regulate the migration of melanoma cell and suggest that lipid rafts may be novel and attractive targets for cancer therapy.  相似文献   

3.
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.  相似文献   

4.
磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5-bisphosphate,PIP2)是细胞膜上一种重要的磷脂酰肌醇,通过作为第二信使前体及自身信号分子的作用,控制其效应物的靶向定位和活性从而调节细胞迁移、囊泡运输、细胞形态发生、信号传导等过程.细胞迁移异常会导致人类多种疾病包括神经发育异常、阿尔茨海默病、癌症和纤毛疾病等.作为细胞骨架的调节剂,PIP2在细胞迁移的关键作用已经被广泛证实,本文将从由PIP5KIs介导的PIP2产生与踝蛋白、Rho家族小GTP酶等效应物关联调节黏附作用和肌动蛋白聚合的角度,讨论PIP2在细胞迁移中发挥作用的具体机制.  相似文献   

5.
Cell migration: Rho GTPases lead the way   总被引:37,自引:0,他引:37  
Rho GTPases control signal transduction pathways that link cell surface receptors to a variety of intracellular responses. They are best known as regulators of the actin cytoskeleton, but in addition they control cell polarity, gene expression, microtubule dynamics and vesicular trafficking. Through these diverse functions, Rho GTPases influence many aspects of cell behavior. This review will focus specifically on their role in cell migration.  相似文献   

6.
Rho小G蛋白家族是Ras超家族成员之一,人类Rho小G蛋白包括20个成员,研究最清楚的有RhoA、Rac1和Cdc42。Rho小G蛋白参与了诸如细胞骨架调节、细胞移动、细胞增殖、细胞周期调控等重要的生物学过程。在这些生物学过程的调节中,Rho小G蛋白的下游效应蛋白质如蛋白激酶(p21-activated kinase,PAK)、ROCK(Rho-kinase)、PKN(protein kinase novel)和MRCK(myotonin-related Cdc42-binding kinase)发挥了不可或缺的作用。迄今研究发现,PAK可调节细胞骨架动力学和细胞运动,另外,PAK通过MAPK(mitogen-activated protein kinases)参与转录、细胞凋亡和幸存通路及细胞周期进程;ROCK与肌动蛋白应力纤维介导黏附复合物的形成及与细胞周期进程的调节有关;哺乳动物的PKN与RhoA/B/C相互作用介导细胞骨架调节;MRCK与细胞骨架重排、细胞核转动、微管组织中心再定位、细胞移动和癌细胞侵袭等有关。该文简要介绍Rho小G蛋白下游激酶PAK、ROCK、PKN和MRCK的结构及其在细胞骨架调节中的功能,重点总结它们在真核细胞周期调控中的作用,尤其是在癌细胞周期进程中所发挥的作用,为寻找癌症治疗的新靶点提供理论依据。  相似文献   

7.
Cell migration and invasion involve the formation of cell adhesion structures as well as the dynamic and spatial regulation of the cytoskeleton. The adhesive structures known as podosomes and invadopodia share a common role in cell motility, adhesion, and invasion, and form when the plasma membrane of motile cells undergoes highly regulated protrusions. Palladin, a molecular scaffold, co-localizes with actin-rich structures where it plays a role in their assembly and maintenance in a wide variety of cell lines. Palladin regulates actin cytoskeleton organization as well as cell adhesion formation. Moreover, palladin contributes to the invasive nature of cancer metastatic cells by regulating invadopodia formation. Palladin seems to regulate podosome and invodopodia formation through Rho GTPases, which are known as key players in coordinating the cellular responses required for cell migration and metastasis.  相似文献   

8.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

9.
Cell migration and invasion involve the formation of cell adhesion structures as well as the dynamic and spatial regulation of the cytoskeleton. The adhesive structures known as podosomes and invadopodia share a common role in cell motility, adhesion, and invasion, and form when the plasma membrane of motile cells undergoes highly regulated protrusions. Palladin, a molecular scaffold, co-localizes with actin-rich structures where it plays a role in their assembly and maintenance in a wide variety of cell lines. Palladin regulates actin cytoskeleton organization as well as cell adhesion formation. Moreover, palladin contributes to the invasive nature of cancer metastatic cells by regulating invadopodia formation. Palladin seems to regulate podosome and invodopodia formation through Rho GTPases, which are known as key players in coordinating the cellular responses required for cell migration and metastasis.  相似文献   

10.
The small GTPases regulate many major biological processes in both tumorigenesis and tumor progression such as cell survival, actin cytoskeleton organization, cell polarity and movement. Wnt5a, a non-canonical Wnt family member, is implicated in the activation of small GTPases in breast cancer. We previously demonstrated that Wnt5a signaling stimulates the migration of breast cancer cells MDA-MB-231 via activating RhoA. However, we found here that RhoA activation was not enhanced by Wnt5a in breast cancer cells MCF-7. The conflicting results prompted us to further probe novel small GTPases in response to Wnt5a and investigate the mechanisms whereby cell migration is regulated. We showed here that Wnt5a dose dependently activated Dvl2, Rab35 and Rac1 and subsequently promoted the migration of MCF-7 cells, which was, however, abolished by knocking down Wnt5a expression via small interfering RNA (siRNA) transfection. Dvl2 siRNA significantly decreased background and Wnt5a-induced Rab35/Rac1 activation and, consequently, cell migration. Rab35 short hairpin RNA (shRNA) remarkably inhibited background and Wnt5a-induced Rac1 activation and cell migration. Additionally, blockade of Rac1 activation with Rac1 siRNA suppressed background and Wnt5a-induced cell migration. Co-immunoprecipitation and immunofluorescence assays showed that Dvl2 bound to Rab35 in mammalian cells. Taken together, we demonstrated that Wnt5a promotes breast cancer cell migration via the Dvl2/Rab35/Rac1 signaling pathway. These findings implicate Wnt5a signaling in regulating small GTPases, which could be targeted for manipulating breast cancer cell migration.  相似文献   

11.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

12.
Cell migration depends mainly on actin polymerization and intracellular organization, which are influenced by a vast variety of actin binding proteins (ABPs). Regulation of ABP activity is mediated by second messengers such as phosphoinositides and calcium. Signaling via these second messengers is initiated and regulated by membrane receptors, e.g., receptor tyrosine kinases (RTKs), and by adhesion molecule interactions (e.g., integrins and selectins) and focal adhesion kinases. A major role in steering second-messenger signaling and thus in actin cytoskeleton reorganization and motility of cancer cells is played by the RTK c-erbB-2. This occurs through a number of signaling pathways which involve mainly enzymes, e.g., phospholipase Cgamma1 and GTPases, which modify signaling molecules. Furthermore large multiprotein complexes including actin-related protein 2/3, Wiskott-Aldrich syndrome protein, profilin, and capping protein among others play an important role in regulating actin reorganization. The complex picture of the mode of actin reorganization, which is involved in tumor cell migration, is slowly emerging from the mists of cellular signaling pathways, but this is still by no means a clear view.  相似文献   

13.
14.
Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress-induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow.  相似文献   

15.
Ellis S  Mellor H 《Current biology : CB》2000,10(21):1387-1390
Small GTPases of the Rho family have a critical role in controlling cell morphology, motility and adhesion through dynamic regulation of the actin cytoskeleton [1,2]. Individual Rho GTPases have been shown to regulate distinct components of the cytoskeletal architecture; RhoA stimulates the bundling of actin filaments into stress fibres [3], Rac reorganises actin to produce membrane sheets or lamellipodia [4] and Cdc42 causes the formation of thin, actin-rich surface projections called filopodia [5]. We have isolated a new Rho-family GTPase, Rif (Rho in filopodia), and shown that it represents an alternative signalling route to the generation of filopodial structures. Coordinated regulation of Rho-family GTPases can be used to generate more complicated actin rearrangements, such as those underlying cell migration [6]. In addition to inducing filopodia, Rif functions cooperatively with Cdc42 and Rac to generate additional structures, increasing the diversity of actin-based morphology.  相似文献   

16.
Bidirectional signaling between the cytoskeleton and integrins   总被引:32,自引:0,他引:32  
Clustering of integrins into focal adhesions and focal complexes is regulated by the actin cytoskeleton. In turn, actin dynamics are governed by Rho family GTPases. Integrin-mediated adhesion activates these GTPases, triggering assembly of filopodia, lamellipodia and stress fibers. In the past few years, signaling pathways have begun to be identified that promote focal adhesion disassembly and integrin dispersal. Many of these pathways result in decreased myosin-mediated cell contractility.  相似文献   

17.
The movement of a metazoan cell entails the regulated creation and turnover of adhesions with the surface on which it moves. Adhesion sites form as a result of signaling between the extracellular matrix on the outside and the actin cytoskeleton on the inside, and they are associated with specific assembles of actin filaments. Two broad categories of adhesion sites can be distinguished: (1) "focal complexes" associated with lamellipodia and filopodia that support protrusion and traction at the cell front; and (2) "focal adhesions" at the termini of stress fibre bundles that serve in longer term anchorage. Focal complexes are signaled via Rac1 or Cdc42 and can either turnover on a minute scale or differentiate, via intervention of the RhoA pathway, into longer-lived focal adhesions. All classes of adhesion sites depend on the stress in the actin cytoskeleton for their formation and maintenance. Different cell types use different adhesion strategies to move, in terms of the relative engagement of filopodia and lamellipodia in focal complex formation and protrusion and the extent of focal adhesion formation. These differences can be attributed to variations in the relative activities of Rho family members. However, the Rho GTPases alone are unable to signal asymmetry in the actin cytoskeleton, necessary for polarisation and movement. Polarisation requires the collaboration of the microtubule cytoskeleton. Changes in the polymerisation state of microtubules influences the activities of both Rac1 and RhoA and microtubules interact directly with adhesion foci and promote their turnover. Possible mechanisms of cross-talk between the microtubule and actin cytoskeletons in determining polarity are discussed.  相似文献   

18.
Directional cell migration is a fundamental process in all organisms that is stringently regulated during tissue development, chemotaxis and wound healing. Migrating cells have a polarized morphology with an asymmetrical distribution of signaling molecules and the cytoskeleton. Microtubules are indispensable for the directional migration of certain cells. Recent studies have shown that Rho family GTPases, which are key regulators of cell migration, affect microtubules, in addition to the actin cytoskeleton and adhesion. Rho family GTPases capture and stabilize microtubules through their effectors at the cell cortex, leading to a polarized microtubule array; in turn, microtubules modulate the activities of Rho family GTPases. In this article, we discuss how a polarized microtubule array is established and how microtubules facilitate cell migration.  相似文献   

19.
Positive regulation of cell migration by chemotactic factors and downstream signaling pathways has been extensively investigated. In contrast, little is known about factors and mechanisms that induce migration arrest, a process important for retention of cells at inflammatory sites and homeostatic regulation of cell trafficking. In this study, we found that IFN-gamma directly inhibited monocyte migration by suppressing remodeling of the actin cytoskeleton and cell polarization in response to the chemokine CCL2. Inhibition was dependent on STAT1 and downstream genes, whereas STAT3 promoted migration. IFN-gamma altered monocyte responses to CCL2 by modulating the activity of Pyk2, JNK, and the GTPases Rac and Cdc42, and inhibiting CCL2-induced activation of the downstream p21-activated kinase that regulates the cytoskeleton and cell polarization. These results identify a new role for IFN-gamma in arresting monocyte chemotaxis by a mechanism that involves modulation of cytoskeleton remodeling. Crosstalk between Jak-STAT and Rac/Cdc42 GTPase-mediated signaling pathways provides a molecular mechanism by which cytokines can regulate cell migration.  相似文献   

20.
Over the past several years, it has become clear that the Rho family of GTPases plays an important role in various aspects of neuronal development including cytoskeleton dynamics and cell adhesion processes. We have analysed the role of MEGAP, a GTPase-activating protein that acts towards Rac1 and Cdc42 in vitro and in vivo, with respect to its putative regulation of cytoskeleton dynamics and cell migration. To investigate the effects of MEGAP on these cellular processes, we have established an inducible cell culture model consisting of a stably transfected neuroblastoma SHSY-5Y cell line that endogenously expresses MEGAP albeit at low levels. We can show that the induced expression of MEGAP leads to the loss of filopodia and lamellipodia protrusions, whereas constitutively activated Rac1 and Cdc42 can rescue the formation of these structures. We have also established quantitative assays for evaluating actin dynamics and cellular migration. By time-lapse microscopy, we show that induced MEGAP expression reduces cell migration by 3.8-fold and protrusion formation by 9-fold. MEGAP expressing cells also showed impeded microtubule dynamics as demonstrated in the TC-7 3x-GFP epithelial kidney cells. In contrast to the wild type, overexpression of MEGAP harbouring an artificially introduced missense mutation R542I within the functionally important GAP domain did not exert a visible effect on actin and microtubule cytoskeleton remodelling. These data suggest that MEGAP negatively regulates cell migration by perturbing the actin and microtubule cytoskeleton and by hindering the formation of focal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号