首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vitro propagation technique based on axillary bud proliferation was developed for the first time to mature annatto (Bixa orellana L.) tree. Nodal segments cultured on Murashige and Skoog (MS) medium supplemented with 1.0 μM benzyl adenine (BA) and tender coconut water (10 %) showed significantly high (P < 0.05) explant response (67.0 %), development of elongated shoots (3.36), shoot buds (8.9) and shoot elongation (3.53 cm). Cytokinins like zeatin, isopentenyl adenine (2-iP), kinetin, or thidiazuron (TDZ) were inferior to BA to induce multiple shoots. Seasonal variations significantly affected the in vitro response of nodal explants. In vitro rooting experiments have showed 55.6 % rooting on MS medium containing 15 μM indole-3-butyric acid (IBA). Alternatively, in vitro raised shoots were rooted (61.1 %) ex vitro, by 10 mM indole-3-butyric acid (IBA) for 30 s. The results of the RAPD marker system revealed the genetic stability among the micropropagated plants. The present protocol in brief, can be used for the clonal propagation of the superior genotype and preservation of germplasm.  相似文献   

2.
Lawsonia inermis Linn. (Mehandi) is cultivated as cash crop in India particularly in Sojat area of Pali district, Rajasthan. Present investigation describes an efficient regeneration system for elite genotype of L. inermis using nodal segments. Optimum response in terms of percent cultures responding, days to bud break and average shoot length was observed on MS medium supplemented with 6-benzylaminopurine (BA; 2.0 mg l−1). Shoot multiplication was influenced by plant growth regulators, repeated transfer of explants and addition of ammonium sulphate. Maximum shoots were regenerated on MS medium supplemented with BA (0.25 mg l−1), kinetin (Kn; 0.25 mg l−1), indole-3-acetic acid (IAA; 0.1 mg l−1) and ammonium sulphate (150 mg l−1). To reduce resources, time and labours costs, we have also attempted ex vitro rooting of shoots. About 95 % shoots were rooted ex vitro on soilrite after treatment with indole-3-butyric acid (IBA; 300 mg l−1) and 2-naphthoxy acetic acid (NOA; 100 mg l−1) and establishment in soil successfully.Keyword: Ex vitro rooting, Lawsonia inermis, Plant growth regulator, In vitro propagation, Repeated transfer  相似文献   

3.
An efficient protocol was developed for the rapid in vitro multiplication of an endemic and critically endangered medicinal herb, Ceropegia noorjahaniae Ans., via enhanced axillary bud proliferation from nodal explants. The effects of phytohormones [6-benzylaminopurine (BAP), kinetin (Kin) thidiazuron (TDZ), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA)] on in vitro regeneration were investigated. The highest number of shoots (18.3 ± 1.3), maximum shoot length (10.1 ± 0.8 cm) and the highest response of shoot induction (95 %) were recorded on MS medium supplemented with 2.0 mg/l BAP. Rooting was best achieved on half-strength MS medium augmented with IBA (1.0 mg/l). Half-strength MS medium supplemented with BAP (4 mg/l) and sucrose (5 %, w/v) produced an average of 5.6 flower buds per microshoots with highest (90 %) flower bud induction response. The plantlets regenerated in vitro with well-developed shoot and roots were successfully established in pots containing sterile sand and coco peat (1:1) and grown in a greenhouse with 85 % survival rate. The regenerated plants did not show any detectable morphological variation. The developed method can be successfully employed for large-scale multiplication and conservation of C. noorjahaniae.  相似文献   

4.
Dendrobium fimbriatum is an ornamental and medicinal orchid listed in the Red data book of IUCN. Phytohormones’ effect on the in vitro regeneration of the orchid was studied using Mitra medium supplemented with different growth regulators. KN produced effective shoot formation when present alone or in combination with IBA or NAA. The shooting was gradually increased when KN concentration was increased from 0.8 to 4.8 mg L−1, but the opposite response was observed with BAP at higher concentration (4.8 mg L−1). IBA either in combination with BAP or KN promoted effective root development and multiplication. Micropropagated orchids grown in the basal medium devoid of any phytohormone showed 100% monomorphism, while low genetic polymorphism of 1.52% (RAPD—Random Amplification of Polymorphic DNA), 1.19% (ISSR-Inter Simple Sequence Repeat) and 3.97% (SCoT—Start Codon Targeted) was exhibited among the regenerants propagated in the hormone enriched medium. UPGMA (Unweighted pair group method using arithmetic averages) dendrograms showed the grouping of mother plant (MP) with the in vitro regenerants. The principal coordinate analysis (PCoA) further confirmed the clustering patterns as determined by the cluster analysis. The study reported for the first time the successful in vitro propagation of Dendrobium fimbriatum and their genetic stability assessment using molecular markers.  相似文献   

5.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   

6.
Blackberry is an economically important crop in Mexico, and its yield is substantially reduced by gray mold, a disease caused by Botrytis cinerea. One of the means to obtain B. cinerea-resistant plants is gamma irradiation. Shoot tips of in vitro-micropropagated blackberry plants (Rubus fruticosus ‘Tupy’) were irradiated with five doses of Cobalt-60 gamma radiation (0, 15, 30, 45, and 60 Gy) and cultured on Murashige and Skoog basal medium containing 1.0 mg l−1 benzylaminopurine and 0.06 mg l−1 indole-3-butyric acid (MSB medium). After 28 days of culture, survival was evaluated to determine mean lethal dose (LD50), and 200 shoots were further irradiated at the determined LD50 (30.8 Gy). After 28 days, the surviving shoots were micropropagated on MSB medium for 60 days. Non-irradiated shoots were screened for the in vitro selection of resistant B. cinerea, exposing them to different concentrations of sterile culture filtrate of B. cinerea (0, 2, 4, 6, 8, and 10 g l−1) for 28 days to determine mean lethal concentration (LC50), and the irradiated surviving shoots were further exposed to the determined LC50 (4.6 g l−1). Three surviving lines (rfgum5, rfgum6, and rfgum17) that did not present changes compared with the control shoots were micropropagated to obtain plantlets, which were further subjected to in vitro resistance assays using detached leaves inoculated with B. cinerea (1×103 spores ml−1). Plants of rfgum5 and rfgum6 mutant lines were highly resistant and presented similar growth to control plants. Therefore, this methodology is useful to obtain B. cinerea-resistant blackberry plants.  相似文献   

7.
An in vitro method of multiple shoot induction and plant regeneration in Psophocarpus tetragonolobus (L.) DC was developed. Cotyledons, hypocotyls, epicotyls, internodal and young seedling leaves were used as explants. MS media supplemented with various concentrations of either thidiazuron (TDZ) or N6-benzylaminopurine (BAP) along with NAA or IAA combinations were used to determine their influence on multiple shoot induction. MS media supplemented with TDZ induced direct shoot regeneration when epicotyls and internodal segments were used as explants. TDZ at 3 mg L−1 induced highest rate (89.2 ± 3.28%) of regeneration with (13.4 ± 2.04) shoots per explant. MS media supplemented with BAP in combination with NAA or IAA induced callus mediated regeneration when cotyledons and hypocotyls were used as explants. BAP (2.5 mg L−1) and IAA (0.2 mg L−1) induced highest rate (100 ± 2.66%) of regeneration with (23.2 ± 2.66) shoots per explant. Mature plants produced from regenerated shoots were transferred successfully to the greenhouse. In a comparative study, the phenolics contents of various parts of greenhouse-grown plants with that of in vitro-raised plants showed significant variations.  相似文献   

8.
The purpose of this study was to develop a protocol to induce high frequency of callus and subsequent plantlet regeneration for Pseudarthria viscida; an important medicinal plant. The cotyledonary node and young leaf pieces (1 × 0.5 cm, length × breadth) were used as explants for callus induction and subsequent shoot regeneration and adventitious roots induction from the shoots. The best results were achieved on the following media: (1) 96 % callus induction from cotyledonary node explants on MS medium supplemented with 1.5 mgl−1 2, 4 dichlorophenoxyacetic acid (2, 4-D) and 0.5 mgl−1 1-naphthalene acetic acid (NAA), (2) 97 % shoot regeneration from cotyledonary node derived calli with an average of 44.9 shoots per explant on MS medium fortified with 3.0 mgl−1 N6-benzylaminopurine (BA) and 1 mgl−1 NAA,37 (3) 98 % rooting with an average number of 3.3 roots per shoot on MS medium containing indole-3-butyric acid (IBA) or NAA (0.5–4 mgl−1) after 45 days. The plantlets were transferred to the field after acclimatization. Of the 40 plantlets transplanted to the soil, 29 survived (72.5 %).  相似文献   

9.
We examined the effects of five antimitotic agents using Antirrhinum majus L. ‘Maryland True Pink’ on the induction of adventitious shoots resulted in increase of frequencies of chromosome doubling without plant growth regulators. Seeds were treated in vitro with 0, 16.5, 32.9, 65.8, 131.6, or 263.2 µM oryzalin (ORY), amiprofos-methyl (APM), butamifos (BUT), or propham (IPC) or 800, 1,600, 3,200, 6,400, or 12,800 µM colchicine (COL) for 7 day. ORY, COL and APM promoted induction of adventitious shoots on the hypocotyls at maximum frequencies of 57.6% with 16.5 µM ORY, 5.6% with 800 µM COL and 88.8% with 131.6 µM APM. ORY and COL also induced adventitious shoots on the epicotyls adjacent to the cotyledons, particularly at high concentrations, with a maximum frequency of 26.0% at 12,800 µM COL. APM treatment increased frequencies of tetraploids from 0.0 to 93.1%, with a positive correlation between the frequency and concentration. By contrast, ORY and COL induced tetraploids at frequencies of 16.0 to 54.6% and 4.0 to 59.4%, respectively, with peaks at both low and high concentrations of each. Correlation analysis revealed that frequencies of adventitious shoot formation could be useful as an index for the induction of tetraploids. These results showed that three of the antimitotic agents tested induced both adventitious shoot and tetraploid without plant growth regulators, indicating that antimitotic action may play a common role in the induction of adventitious shoot.  相似文献   

10.
Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N6-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.Key words: Cotyledonary nodes, Multiple shoot induction, Pulse treatment, TDZ  相似文献   

11.
A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation–vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.  相似文献   

12.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

13.
Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H2 (80%) and 13CO2 (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from 13CO2. At 50 °C, acetate was first produced but later on consumed with formation of CH4. Acetate was also produced in the absence of exogenous H2 albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, 13C-labeled bacterial rRNA was detected after 20 days of incubation with 13CO2. In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated 13CO2 in the presence and absence of exogenous H2, respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the 13C treatment at 50 °C. Assimilation of 13CO2 into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H2 at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.  相似文献   

14.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

15.
In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L−1 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L−1 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.  相似文献   

16.
Arnebia hispidissima, which belongs to the family Boraginaceae, is an important medicinal and dye yielding plant. The alkannin, a red dye, are root-specific secondary metabolites of A. hispidissima. Shoots were regenerated from callus derived from immature inflorescence explants obtained from field grown plants. MS medium containing 4.52 μM 2, 4-D and 3.33 μM BAP was found to be most effective for the proliferation of callus, induced on medium containing 4.52 μM 2, 4-D. Maximum number (43.1 ± 0.25) with average length (5.2 ± 0.23) of shoots regenerated when callus was transferred to MS medium supplemented with 1.11 μM BAP, 1.16 μM Kin and 0.57 μM IAA. About 75.5 % of in vitro regenerated shoots were rooted on half-strength MS medium supplemented with 9.84 μM of IBA and 200 mg l−1 of activated charcoal. In comparison to in vitro, higher percent (90.2 %) of shoots were rooted under ex vitro conditions when treated with IBA (0.98 mM) for 5 min. Plantlets rooted in vitro as well as ex vitro were acclimatized successfully under the green house conditions. Ex vitro rooted plants exhibited higher survival percentage (75 %) as compared to in vitro rooted plantlets (60 %). Present study may be applicable in the large-scale root-specific red dye (alkannin) production via root induction under ex vitro condition.  相似文献   

17.
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs.  相似文献   

18.

Background

This study tested the hypothesis that the core interthreshold zone (CIZ) changes during exposure to red or blue light via the non-visual pathway, because it is known that light intensity affects the central nervous system. We conducted a series of human experiments with 5 or 10 male subjects in each experiment.

Methods

The air temperature in the climatic chamber was maintained at 20 to 24°C. The subjects wore suits perfused with 25°C water at a rate of 600 cm3/min. They exercised on an ergometer at 50% of their maximum work rate for 10 to 15 minutes until sweating commenced, and then remained continuously seated without exercise until their oxygen uptake increased. The rectal temperature and skin temperatures at four sites were monitored using thermistors. The sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The subjects were exposed to red or blue light at 500 lx and 1000 lx in both summer and winter.

Results

The mean CIZs at 500 lx were 0.23 ± 0.16°C under red light and 0.20 ± 0.10°C under blue light in the summer, and 0.19 ± 0.20°C under red light and 0.26 ± 0.24°C under blue light in the winter. The CIZs at 1000 lx were 0.18 ± 0.14°C under red light and 0.15 ± 0.20°C under blue light in the summer, and 0.52 ± 0.18°C under red light and 0.71 ± 0.28°C under blue light in the winter. A significant difference (P <0.05) was observed in the CIZs between red and blue light at 1000 lx in the winter, and significant seasonal differences under red light (P <0.05) and blue light (P <0.01) were also observed at 1000 lx.

Conclusions

The present study demonstrated that dynamic changes in the physiological effects of colors of light on autonomic functions via the non-visual pathway may be associated with the temperature regulation system.  相似文献   

19.
The present study reports an efficient in vitro micropropagation protocol for a medicinally important tree, Terminalia bellerica Roxb. from nodal segments of a 30 years old tree. Nodal segments taken from the mature tree in March-April and cultured on half strength MS medium gave the best shoot bud proliferation response. Combinations of serial transfer technique (ST) and incorporation of antioxidants (AO) [polyvinylpyrrolidone, PVP (50 mg l−1) + ascorbic acid (100 mg l−1) + citric acid (10 mg l−1)] in the culture medium aided to minimize browning and improve explant survival during shoot bud induction. Highest multiplication of shoots was achieved on medium supplemented with 6-benzyladenine (BA, 8.8 μM) and α-naphthalene acetic acid (NAA, 2.6 μM) in addition to antioxidants. Shoot elongation was obtained on MS medium containing BA (4.4 μM) + phloroglucinol (PG, 3.9 μM). Elongated shoots were transferred to half strength MS medium containing indole-3-butyric acid (IBA, 2.5 μM) for root development. The acclimatization of plantlets was carried out under greenhouse conditions. The genetic fidelity of the regenerated plants was checked using inter simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. Comparison of the bands among the regenerants and mother plant confirmed true-to-type clonal plants.  相似文献   

20.
The objectives of the present work were in vitro propagation of Araucaria excelsa R. Br. var. glauca Carrière (Norfolk Island pine) with focus on the evaluation of the mean number of shoots per explant (MNS/E) and mean length of shoots per explants (MLS/E) produced by different parts of the orthotropic stem of A. excelsa R. Br. var. glauca in response to plant growth regulators. Norfolk Island pine axillary meristems responded very well to the 2-iso-pentenyl adenine (2iP) and thidiazuron (TDZ) levels. Explants taken from stem upper segments in the media containing 2iP had a higher MNS/E (3.47) and MLS/E (6.27 mm) in comparison to those taken from stem lower segments, which were 0.71 and 0.51 mm, respectively. Using 0.045 μM TDZ in the MS medium not only resulted in 4.60 MNS/E with 7.08 mm MLS/E but proliferated shoots showed a good performance as well. Investigating the best position of stem explant on mother plant as well as the best concentrations of growth regulators were performed which were useful for efficient micropropagation of this plant. Thirty three percent of explants were rooted in the MS medium containing 3 % sucrose, supplemented with 7.5 μM of both NAA and IBA for 2 weeks before transferring to a half strength MS medium without any growth regulator. Plantlets obtained were acclimatized and transferred to the greenhouse with less than 20 % mortality. This procedure considered the first successful report for regeneration and acclimatization of A. excelsa R. Br. var. glauca plantlet through main stem explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号