首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

2.
GABAA receptors (GABAAR) mediate inhibitory neurotransmission in the human brain. Neurons modify subunit expression, cellular distribution and function of GABAAR in response to different stimuli, a process named plasticity. Human lymphocytes have a functional neuronal-like GABAergic system with GABAAR acting as inhibitors of proliferation. We here explore if receptor plasticity occurs in lymphocytes. To this end, we analyzed human T lymphocyte Jurkat cells exposed to different physiological stimuli shown to mediate plasticity in neurons: GABA, progesterone and insulin. The exposure to 100 μM GABA differently affected the expression of GABAAR subunits measured at both the mRNA and protein level, showing an increase of α1, β3, and γ2 subunits but no changes in δ subunit. Exposure of Jurkat cells to different stimuli produced different changes in subunit expression: 0.1 μM progesterone decreased δ and 0.5 μM insulin increased β3 subunits. To identify the mechanisms underlying plasticity, we evaluated the Akt pathway, which is involved in the phosphorylation of β subunits and receptor translocation to the membrane. A significant increase of phosphorylated Akt and on the expression of β3 subunit in membrane occurred in cells exposed 15 h to GABA. To determine if plastic changes are translated into functional changes, we performed whole cell recordings. After 15 h GABA-exposure, a significantly higher percentage of cells responded to GABA application when compared to 0 and 40 h exposure, thus indicating that the detected plastic changes may have a role in GABA-modulated lymphocyte function.  相似文献   

3.
The amino acid γ-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotrans-mitter that mediates most of its effects through fast GABA-gated Cl?-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes α, β, γ, δ, ε, and ρ, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of α, β, and γ subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular α and γ subunit variants. Little is known about the functional properties of the β, δ, and ε subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.  相似文献   

4.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

5.
6.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

7.
Acute and chronic ethanol (EtOH) administration is known to affect function, surface expression, and subunit composition of γ-aminobutyric acid (A) receptors (GABAARs) in different parts of the brain, which is believed to play a major role in alcohol dependence and withdrawal symptoms. The basolateral amygdala (BLA) participates in anxiety-like behaviors including those induced by alcohol withdrawal. In the present study we assessed the changes in cell surface levels of select GABAAR subunits in the BLA of a rat model of alcohol dependence induced by chronic intermittent EtOH (CIE) treatment and long-term (>40 days) withdrawal and investigated the time-course of such changes after a single dose of EtOH (5 g/kg, gavage). We found an early decrease in surface expression of α4 and δ subunits at 1 h following single dose EtOH treatment. At 48 h post-EtOH and after CIE treatment there was an increase in α4 and γ2, while α1, α2, and δ surface expression were decreased. To relate functional changes in GABAARs to changes in their subunit composition we analyzed miniature inhibitory postsynaptic currents (mIPSCs) and the picrotoxin-sensitive tonic current (Itonic) 48 h after EtOH intoxication. The Itonic magnitude and most of the mIPSC kinetic parameters (except faster mIPSC decay) were unchanged at 48 h post-EtOH. At the same time, Itonic potentiation by acute EtOH was greatly reduced, whereas mIPSCs became significantly more sensitive to potentiation by acute EtOH. These results suggest that EtOH intoxication-induced GABAAR plasticity in the BLA might contribute to the diminished sedative/hypnotic and maintained anxiolytic effectiveness of EtOH.  相似文献   

8.
The α4 subunit of the GABAA receptor (GABAAR) is highly expressed in the thalamus where receptors containing the α4 and δ subunits are major mediators of tonic inhibition. The α4 subunit also exhibits considerable plasticity in a number of physiological and pathological conditions, raising questions about the expression of remaining GABAAR subunits when the α4 subunit is absent. Immunohistochemical studies of an α4 subunit knockout (KO) mouse revealed a substantial decrease in δ subunit expression in the ventrobasal nucleus of the thalamus as well as other forebrain regions where the α4 subunit is normally expressed. In contrast, several subunits associated primarily with phasic inhibition, including the α1 and γ2 subunits, were moderately increased. Intracellular localization of the δ subunit was also altered. While δ subunit labeling was decreased within the neuropil, some labeling remained in the cell bodies of many neurons in the ventrobasal nucleus. Confocal microscopy demonstrated co-localization of this labeling with an endoplasmic reticulum marker, and electron microscopy demonstrated increased immunogold labeling near the endoplasmic reticulum in the α4 KO mouse. These results emphasize the strong partnership of the δ and α4 subunit in the thalamus and suggest that the α4 subunit of the GABAAR plays a critical role in trafficking of the δ subunit to the neuronal surface. The findings also suggest that previously observed reductions in tonic inhibition in the α4 subunit KO mouse are likely to be related to alterations in δ subunit expression, in addition to loss of the α4 subunit.  相似文献   

9.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

10.
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 μm GABA, the bicuculline-sensitive tonic currents were ∼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were ∼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by ∼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.  相似文献   

11.
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.  相似文献   

12.
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.  相似文献   

13.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   

14.
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce α5‐GABAA receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABAAα5‐subunit contents, as occurring in α5(H105R) knock‐in mice, on the memory for location of objects. This required the behavioral characterization of α5(H105R) and wild‐type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of α5‐subunits and retained long‐term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T‐ and eight‐arm mazes. Processing of object, position and context memories and object‐guided response learning were spared. Genotype difference in object‐in‐place memory retrieval and in encoding and response learning strategies for object–location combinations manifested as a bias favoring object‐based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in α5(H105R) mice a behavioral–cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased α5‐subunit contents.  相似文献   

15.
GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370–385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAAR throughout circuit formation that regulates neuronal development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1241–1251, 2015  相似文献   

16.
GABAA receptors are the major inhibitory transmitter receptors in the central nervous system. They are chloride ion channels that can be opened by γ-aminobutyric acid (GABA) and are the targets of action of a variety of pharmacologically and clinically important drugs. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to the formation of a large variety of distinct GABAA receptor subtypes in the brain. The majority of GABAA receptors seems to be composed of two α, two β and one γ subunit and the occurrence of a defined subunit stoichiometry and arrangement in αβγ receptors strongly indicates that assembly of GABAA receptors proceeds via defined pathways. Based on the differential ability of subunits to interact with each other, a variety of studies have been performed to identify amino acid sequences or residues important for assembly. Such residues might be involved in direct protein-protein interactions, or in stabilizing direct contact sites in other regions of the subunit. Several homo-oligomeric or hetero-oligomeric assembly intermediates could be the starting point of GABAA receptor assembly but so far no unequivocal assembly mechanism has been identified. Possible mechanisms of assembly of GABAA receptors are discussed in the light of recent publications.  相似文献   

17.
The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse formation in different subcellular compartments. We investigated mice (“γ2 knockdown mice”) with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.  相似文献   

18.
Synaptic GABAA receptors (GABAARs) mediate most of the inhibitory neurotransmission in the brain. The majority of these receptors are comprised of α1, β2, and γ2 subunits. The amygdala, a structure involved in processing emotional stimuli, expresses α2 and γ1 subunits at high levels. The effect of these subunits on GABAAR-mediated synaptic transmission is not known. Understanding the influence of these subunits on GABAAR-mediated synaptic currents may help in identifying the roles and locations of amygdala synapses that contain these subunits. Here, we describe the biophysical and synaptic properties of pure populations of α1β2γ2, α2β2γ2, α1β2γ1 and α2β2γ1 GABAARs. Their synaptic properties were examined in engineered synapses, whereas their kinetic properties were studied using rapid agonist application, and single channel recordings. All macropatch currents activated rapidly (<1 ms) and deactivated as a function of the α-subunit, with α2-containing GABAARs consistently deactivating ∼10-fold more slowly. Single channel analysis revealed that the slower current decay of α2-containing GABAARs was due to longer burst durations at low GABA concentrations, corresponding to a ∼4-fold higher affinity for GABA. Synaptic currents revealed a different pattern of activation and deactivation to that of macropatch data. The inclusion of α2 and γ1 subunits slowed both the activation and deactivation rates, suggesting that receptors containing these subunits cluster more diffusely at synapses. Switching the intracellular domains of the γ2 and γ1 subunits substantiated this inference. Because this region determines post-synaptic localization, we hypothesize that GABAARs containing γ1 and γ2 use different mechanisms for synaptic clustering.  相似文献   

19.
It is a common and widely accepted assumption that glycine and GABA are the main inhibitory transmitters in the central nervous system (CNS). But, in the past 20 years, several studies have clearly demonstrated that these amino acids can also be excitatory in the immature central nervous system. In addition, it is now established that both GABA receptors (GABARs) and glycine receptors (GlyRs) can be located extrasynaptically and can be activated by paracrine release of endogenous agonists, such as GABA, glycine, and taurine. Recently, non-synaptic release of GABA, glycine, and taurine gained further attention with increasing evidence suggesting a developmental role of these neurotransmitters in neuronal network formation before and during synaptogenesis. This review summarizes recent knowledge about the non-synaptic activation of GABAARs and GlyRs, both in developing and adult CNS. We first present studies that reveal the functional specialization of both non-synaptic GABAARs and GlyRs and we discuss the neuronal versus non-neuronal origin of the paracrine release of GABAAR and GlyR agonists. We then discuss the proposed non-synaptic release mechanisms and/or pathways for GABA, glycine, and taurine. Finally, we summarize recent data about the various roles of non-synaptic GABAergic and glycinergic systems during the development of neuronal networks and in the adult.  相似文献   

20.
Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号