首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The enhanced migration found in tumor cells is often caused by external stimuli and the sequential participation of cytoskeleton‐related signaling molecules. However, until now, the molecular connection between the lysophosphatidic acid (LPA) receptor and nonmuscle myosin II (NM II) has not been analyzed in detail for LPA‐induced migration. Here, we demonstrate that LPA induces migration by activating the LPA1 receptor which promotes phosphorylation of the 20 kDa NM II light chain through activation of Rho kinase (ROCK). We show that LPA‐induced migration is insensitive to pertussis toxin (PTX) but does require the LPA1 receptor as determined by siRNA and receptor antagonists. LPA activates ROCK and also increases GTP‐bound RhoA activity, concomitant with the enhanced membrane recruitment of RhoA. LPA‐induced migration and invasion are attenuated by specific inhibitors including C3 cell‐permeable transferase and Y‐27632. We demonstrate that NM II plays an important role in LPA‐induced migration and invasion by inhibiting its cellular function with blebbistatin and shRNA lentivirus directed against NM II‐A or II‐B. Inhibition or loss of either NM II‐A or NM II‐B in 4T1 cells results in a decrease in migration and invasion. Restoration of the expression of NM II‐A or NM II‐B also rescued LPA‐induced migration. Taken together, these results suggest defined pathways for signaling through the LPA1 receptor to promote LPA‐mediated NM II activation and subsequent cell migration in 4T1 breast cancer cells. J. Cell. Physiol. 226: 2881–2893, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid ligand present in oxidized low-density lipoprotein. The effects of LPA were investigated, first separately on endothelial cells (EC) and monocytes. Using Ki16425 (an LPA1 and LPA3 receptor antagonist), GW9662 [a peroxisome proliferator-activator receptor (PPAR) antagonist], and pertussis toxin (that inhibits Gi/o), we demonstrate that LPA enhances IL-8 and monocyte chemoattractant protein-1 expression through a LPA1-, LPA3-, Gi/o- and PPAR-dependent manner in the EAhy926 cells. The effect of LPA on chemokine overexpression was confirmed in human umbilical vein endothelial cells. LPA was able to enhance monocyte migration at concentrations <1 µM and to inhibit their migration at LPA concentrations >1 µM, as demonstrated by using a chemotaxis assay. We then investigated the effects of LPA on the cross-talk between EC and monocytes by evaluating the chemotactic activity in the supernatants of LPA-treated EC. At 1 µM LPA, both cell types respond cooperatively, favoring monocyte migration. At higher LPA concentration (25 µM), the chemotactic response varies as a function of time. After 4 h, the chemotactic effect of the cytokines secreted by the EC is counteracted by the direct inhibitory effect of LPA on monocytes. For longer periods of time (24 h), we observe a monocyte migration, probably due to lowered concentrations of bioactive LPA, given the induction of lipid phosphate phosphatase-2 in monocytes that may inactivate LPA. These results suggest that LPA activates EC to secrete chemokines that in combination with LPA itself might favor or not favor interactions between endothelium and circulating monocytes. lysophosphatidic acid; endothelial cells; monocytes; chemotaxis  相似文献   

4.
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.  相似文献   

5.
6.
7.
8.
Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.  相似文献   

9.
In several types of cells, the activation of the receptor tyrosine kinase c-Met by its ligand hepatocyte growth factor (HGF) requires the coreceptor CD44v6. The CD44 extracellular domain is necessary for c-Met autophosphorylation, whereas the intracellular domain is required for signal transduction. We have already shown that the CD44 cytoplasmic tail recruits ezrin, radixin and moesin (ERM) proteins to the complex of CD44v6, c-Met, and HGF. We have now defined the function of the ERM proteins and the step they promote in the signaling cascade. The association of ERM proteins to the coreceptor is absolutely required to mediate the HGF-dependent activation of Ras by the guanine nucleotide exchange factor Sos. The ERM proteins need, in addition, to be linked to the actin cytoskeleton to catalyze the activation of Ras. Thus, we describe here a new function of the cytoskeleton. It is part of a "signalosome" complex that organizes the activation of Ras by Sos. So far the cytoskeleton has mainly been identified as a "responder" to signal transduction. Here, we show now that F-actin acts as an "inducer" that actively organizes the signaling cascade.  相似文献   

10.
Ovarian cancer (OC) is a commonly diagnosed female cancer. Ligustrazine (LSZ), a natural compound, has been reported to exert anti-cancer activity, although the mechanisms underlying the anti-cancer effects are not clear. The present study investigated the impact of LSZ on cell proliferation and migration by regulating microRNA-211 (miR-211) expression using the human ovarian cancer SK-OV-3 and OVCAR-3 cell lines. OC cells were treated with 0, 0.5, 1, and 2 mM LSZ, and quantitative real-time PCR was utilized to measure miR-211 levels in SK-OV-3 and OVCAR-3 cells with different treatment. Moreover, to further confirm the roles of miR-211 in LSZ induced anti-tumor effects, miR-211 expression was inhibited by transfection of miR-211 inhibitors in SK-OV-3 cells. Cell proliferation of transfected cells was evaluated using the CCK-8 and colony formation assay. The scratch assay was employed to assess cell migration and transwell assay was performed for evaluating the cell invasion. Protein levels of epithelial–mesenchymal transition (EMT) markers were determined by Western blotting. We found that LSZ inhibited the viability, proliferation, migration and invasion ability of SK-OV-3 and OVCAR-3 cells in a dose-dependent manner; moreover, LSZ could significantly increase the expression of miR-211 in both SK-OV-3 and OVCAR-3, and knockdown of miR-211 in SK-OV-3 cells partially abrogated the anti-tumor behavior of LSZ by promoting the viability, proliferation, migration, invasion and EMT of SK-OV-3 cells. Thus, we found that LSZ can inhibit the proliferation and migration of OC cells via regulating miR-211. Our study suggests that LSZ might be a potential and effective treatment for OC.  相似文献   

11.
Calcium-independent phospholipase A(2) (iPLA(2)) plays a pivotal role in phospholipid remodeling and many other biological processes, including inflammation and cancer development. iPLA(2) can be activated by caspase-3 via a proteolytic process in apoptotic cells. In this study we identify novel signaling and functional loops of iPLA(2) activation leading to migration of non-apoptotic human ovarian cancer cells. The extracellular matrix protein, laminin-10/11, but not collagen I, induces integrin- and caspase-3-dependent cleavage and activation of overexpressed and endogenous iPLA(2). The truncated iPLA(2) (amino acids 514-806) generates lysophosphatidic acid and arachidonic acid. Arachidonic acid is important for enhancing cell migration toward laminin-10/11. Lysophosphatidic acid activates Akt that in turn acts in a feedback loop to block the cleavage of poly-(ADP-ribose) polymerase and DNA fragmentation factor as well as prevent apoptosis. By using pharmacological inhibitors, blocking antibodies, and genetic approaches (such as point mutations, dominant negative forms of genes, and siRNAs against specific targets), we show that beta(1), but not beta(4), integrin is involved in iPLA(2) activation and cell migration to laminin-10/11. The role of caspase-3 in iPLA(2) activation and cell migration are supported by several lines of evidence. 1) Point mutation of Asp(513) (a cleavage site of caspase-3 in iPLA(2)) to Ala blocks laminin-10/11-induced cleavage and activation of overexpressed iPLA(2), whereas mutation of Asp(733) to Ala has no such effect, 2) treatment of inhibitors or a small interfering RNA against caspase-3 results in decreased cell migration toward laminin-10/11, and 3) selective caspase-3 inhibitor blocks cleavage of endogenous iPLA(2) induced by laminin-10/11. Importantly, small interfering RNA-mediated down-regulation of endogenous iPLA(2) expression in ovarian carcinoma HEY cells results in decreased migration toward laminin, suggesting that our findings are pathophysiologically important.  相似文献   

12.
The highly related ERM (Ezrin, Radixin, Moesin) proteins provide a regulated linkage between the membrane and the underlying actin cytoskeleton. They also provide a platform for the transmission of signals in responses to extracellular cues. Studies in different model organisms and in cultured cells have highlighted the importance of ERM proteins in the generation and maintenance of specific domains of the plasma membrane. A central question is how do ERM proteins coordinate actin filament organization and membrane protein transport/stability with signal transduction pathways to build up complex structures? Through their interaction with numerous partners including membrane proteins, actin cytoskeleton and signaling molecules, ERM proteins have the ability to organize multiprotein complexes in specific cellular compartments. Likewise, ERM proteins participate in diverse functions including cell morphogenesis, endocytosis/exocytosis, adhesion and migration. This review focuses on aspects still poorly understood related to the function of ERM proteins in epithelial cell adhesion and migration.Key words: epithelial cells, membrane-cytoskeleton interface, morphogenesis, ERM proteins, cell adhesion  相似文献   

13.
Activator and inhibitor roles for the 88-kDa-secreted glycoprotein progranulin (PGRN) have been demonstrated in ovarian cancer cells. Here, we investigated the effects of PGRN in breast cancer migration. Testing MCF7, MDA-MB-453, and MDA-MB-231 human breast cancer cells and the MCF10A breast epithelial cell line, we demonstrate that LPA-induced PGRN stimulation led to a significant increase in cell invasion of MDA-MB-453 and MDA-MB-231 cells only (p<0.05). Moreover, incubation with an anti-PGRN antibody, an inhibitor of the ERK pathway (PD98059) or both in combination inhibited the ability of MDA-MB-231 cells to invade. Furthermore, the expression of focal adhesion kinases promoted by LPA-induced PGRN was also inhibited by PD98059 alone or in combination with an anti-PGRN antibody (p<0.05). Taken together, these results suggest that the LPA activation of PGRN involving the ERK pathway is critical to promote MDA-MB-231 breast cancer cell invasion.  相似文献   

14.
Protease-activated receptor-2 (PAR-2) is activated by trypsin-like serine proteases and can promote cell migration through an ERK1/2-dependent pathway, involving formation of a scaffolding complex at the leading edge of the cell. Previous studies also showed that expression of a dominant negative fragment of beta-arrestin-1 reduces PAR-2-stimulated internalization, ERK1/2 activation, and cell migration; however, this reagent may block association of many proteins, including beta-arrestin-2 with clathrin-coated pits. Here we investigate the role of PAR-2 in the constitutive migration of a metastatic breast cancer cell line, MDA MB-231, and use small interfering RNA to determine the contribution of each beta-arrestin to this process. We demonstrate that a trypsin-like protease secreted from MDA MB-231 cells can promote cell migration through autocrine activation of PAR-2 and this correlates with constitutive localization of PAR-2, beta-arrestin-2, and activated ERK1/2 to pseudopodia. Addition of MEK-1 inhibitors, trypsin inhibitors, a scrambled PAR-2 peptide, and silencing of beta-arrestins with small interfering RNA also reduce base-line migration of MDA MB-231 cells. In contrast, a less metastatic PAR-2 expressing breast cancer cell line does not exhibit constitutive migration, pseudopodia formation, or trypsin secretion; in these cells PAR-2 is more uniformly distributed around the cell periphery. These data demonstrate a requirement for both beta-arrestins in PAR-2-mediated motility and suggest that autocrine activation of PAR-2 by secreted proteases may contribute to the migration of metastatic tumor cells through beta-arrestin-dependent ERK1/2 activation.  相似文献   

15.
Chemoattractant-mediated Rap1 activation requires GPCR/G proteins   总被引:1,自引:0,他引:1  
Cha I  Lee SH  Jeon TJ 《Molecules and cells》2010,30(6):563-567
Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.  相似文献   

16.
Stem cell factor (SCF) activates a variety of signals associated with stimulation of proliferation, differentiation, migration, and survival in melanocytes. However, the molecular mechanisms by which SCF and its receptor Kit activates these signaling pathways simultaneously and independently are still poorly defined. Here, we examined whether SCF induces ezrin/radixin/moesin (ERM) proteins phosphorylation as a downstream target of PI3K in melanocytes. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and are activated by phosphorylation of a C-terminal threonine residue. Our results demonstrated that SCF-induced ERM proteins phosphorylation on threonine residue and Rac1 activation in cultured normal human melanocytes through the activation of PI3K. The functional role of phosphorylated-ERM proteins was examined using melanocytes infected with adenovirus carrying a dominant negative mutant (Ala-558, TA) or wild type of moesin. In the TA moesin-overexpressing melanocytes, SCF-induced cell proliferation and migration were inhibited. Thus, our results indicate that phosphorylation of ERM proteins plays an important role in the regulation of SCF-induced melanocyte proliferation and migration.  相似文献   

17.
18.
Ovarian carcinomas, the most fatal gynaecological malignancies, are associated with poor prognosis predominantly because of a high recurrence rate. Ovarian cancer cells spread widely throughout the abdominal cavity leading to peritoneal metastasis. The influence of the mesothelial microenvironment on the biological mechanisms leading to cancer cell colonization of the mesothelium is poorly understood. This study aims to investigate whether mesothelial secretions affect the migration of ovarian cancer cells and focuses on the role of the adhesive molecule Vn (vitronectin) and its integrin receptors. An in vitro co‐culture model indicated that clusters of IGROV1 and SKOV3 cells adhere to MeT‐5A mesothelial cells preferentially at intercellular sites, invade the mesothelial monolayer and alter the integrity of the mesothelium. In addition, mesothelial CM (cell‐conditioned medium) induces migration of IGROV1 and SKOV3 cells in Boyden chambers and wound healing assays. Furthermore, blocking molecules directed against vitronectin or its αv integrin receptor decrease mesothelial‐CM‐induced migration by approximately 40% and 60–70% for IGROV1 and SKOV3 ovarian cancer cells, respectively, in Boyden chamber assays. Wound healing assays that allow cell migration to be measured over 24 h periods demonstrated that blocking molecules prevent the migration of IGROV1 and SKOV3 cells. Vitronectin is present in CM MeT‐5A (mesothelial conditioned medium) and in metastatic peritoneal tissue sections. The expression of vitronectin at the periphery of mesothelial cells and within ovarian cancer cell clusters suggests a potential role for this molecule during intraperitoneal implantation of ovarian cancer cells. Vitronectin could represent a target for the development of anti‐adhesive strategies to impede ovarian cancer dissemination.  相似文献   

19.
In Con8 rat mammary epithelial tumor cells, the synthetic glucocorticoid dexamethasone stimulates transepithelial electrical resistance (TER), promotes the remodeling of apical junctions, and down-regulates the level of fascin, an actin-bundling protein that can bind to beta-catenin. We have previously shown that ectopic expression of fascin prevented the glucocorticoid-mediated recruitment of tight junction and adherens junction proteins to the site of cell-cell contact. Here we demonstrate that exogenous treatment or constitutive production of transforming growth factor-alpha (TGF-alpha) ablated the dexamethasone down-regulation of the fascin protein level and disrupted the dexamethasone-induced remodeling of the apical junction and stimulation of the monolayer TER. The response to TGF-alpha was polarized in that basolateral, but not apical, exposure to this growth factor coordinately reversed the steroid control of fascin production and tight junction formation. Expression of dominant negative RasN17 or treatment with the PD098059 MEK inhibitor abolished or attenuated the TGF-alpha disruptive effects on TER, junction remodeling, and fascin protein levels. Our results implicate the regulation of fascin protein levels as a target of cross-talk between the Ras-dependent growth factor signaling and glucocorticoid signaling pathways that controls tight junction dynamics in mammary epithelial tumor cells. We propose that reversing the down-regulation of fascin is critical for the ability of TGF-alpha to disrupt the glucocorticoid-induced remodeling of the apical junction that leads to tight junction formation.  相似文献   

20.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA1) to LPA6) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA1 and LPA3 may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号