共查询到10条相似文献,搜索用时 0 毫秒
1.
Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range 总被引:3,自引:1,他引:2
Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade‐off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis. 相似文献
2.
3.
Nan Lin Qun Liu Jacob B. Landis Hum Kala Rana Zhimin Li Hengchang Wang Hang Sun Tao Deng 《Diversity & distributions》2023,29(4):524-542
Aim
How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient.Location
Himalaya-Hengduan Mountains, China.Methods
We combined evidence from population genomics and ecological data in both space and time to investigate the state of “staying” or “moving”. We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate-driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient.Results
Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic-driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid-elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal-driven selection and continuous adaptations to high elevation in the Himalaya-Hengduan Mountains.Main Conclusions
Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change. 相似文献4.
The introduction of plants into new biogeographical realms is a main repercussion of human trade. The responses of native insects to alien plants may provide insight into how invaders influence ecological processes in their new communities. We illustrate this point with results from our field and lab studies of seed-feeding insects on alien plants. Soapberry bugs ( Jadera , Leptocoris ) have colonized several species of weedy invasive plants (sapindaceous trees and vines) in the United States and Australia. After initial reduction in physiological performance, they evolved behavioral, morphological, physiological and life history adaptations permitting more efficient exploitation of those hosts. Those changes occurred quickly, in fewer than 100 generations (ca. 30–50 years). The underlying genetic changes are surprisingly complex, and also involve loss of function on native hosts. Contrasting with this is the bruchine beetle ( Stator limbatus ) on seeds of leguminous trees. Large numbers of S. limbatus oviposit on an alien tree in Arizona, but few offspring survive. The main influence on larval survival is a maternal effect determined by the host the mother experiences as her eggs mature. Adaptive plasticity in egg size and composition may ultimately permit successful exploitation of novel resources. Together, these studies show that both complex genetic and developmental factors influence the integration of ecological and evolutionary processes in environments altered by anthropogenically initiated plant invasions. Tractable insect study systems may be valuable guides to understanding biotic dynamics in a changing world. 相似文献
5.
Lombaert E Guillemaud T Thomas CE Lawson Handley LJ Li J Wang S Pang H Goryacheva I Zakharov IA Jousselin E Poland RL Migeon A Van Lenteren J DE Clercq P Berkvens N Jones W Estoup A 《Molecular ecology》2011,20(22):4654-4670
Correct identification of the source population of an invasive species is a prerequisite for testing hypotheses concerning the factors responsible for biological invasions. The native area of invasive species may be large, poorly known and/or genetically structured. Because the actual source population may not have been sampled, studies based on molecular markers may generate incorrect conclusions about the origin of introduced populations. In this study, we characterized the genetic structure of the invasive ladybird Harmonia axyridis in its native area using various population genetic statistics and methods. We found that native area of H. axyridis most probably consisted of two geographically distinct genetic clusters located in eastern and western Asia. We then performed approximate Bayesian computation (ABC) analyses on controlled simulated microsatellite data sets to evaluate (i) the risk of selecting incorrect introduction scenarios, including admixture between sources, when the populations of the native area are genetically structured and sampling is incomplete and (ii) the ability of ABC analysis to minimize such risks by explicitly including unsampled populations in the scenarios compared. Finally, we performed additional ABC analyses on real microsatellite data sets to retrace the origin of biocontrol and invasive populations of H. axyridis, taking into account the possibility that the structured native area may have been incompletely sampled. We found that the invasive population in eastern North America, which has served as the bridgehead for worldwide invasion by H. axyridis, was probably formed by an admixture between the eastern and western native clusters. This admixture may have facilitated adaptation of the bridgehead population. 相似文献
6.
Testing the hypothesis of greater eurythermality in invasive than in native ladybird species: from physiological performance to life‐history strategies 下载免费PDF全文
RODRIGO M. BARAHONA‐SEGOVIA AUDREY A. GREZ FRANCISCO BOZINOVIC 《Ecological Entomology》2016,41(2):182-191
1. Global warming and biological invasions are important threats to biodiversity. Nonetheless, there is little information on how these factors influence performance or life‐history traits of invasive and native species. 2. The effects of temperature on physiological and fitness traits of two invasive alien species (Harmonia axyridis and Hippodamia variegata) and one native species (Eriopis chilensis) of coccinellid were evaluated, testing a model of eurythermality. Eggs of all species were exposed to four temperature treatments (20, 24, 30 and 33 °C). In adult F2 we measured fecundity, locomotor performance, development time (total and per life stage), survival, and preferred body temperature in a thermal gradient. 3. It was found that H. axyridis had comparatively better performance at low temperatures (i.e. 20 °C), while the performance of H. variegata and E. chilensis did not change with temperature or was better at higher temperatures (30 °C). The standardised Levins index showed that all species are eurythermic. E. chilensis had a high niche overlap with the invasive alien ladybird species, rejecting the hypothesis of greater eurythermality of invasive species than native species. 4. Although there were differences in the temperature preferences and in the response of some physiological and life‐history traits of ladybirds to temperature, both the native and invasive alien species are eurythermic, contrary to the prediction. The better performance of H. axyridis at lower temperatures may result in displacement of its current distribution, and thus not all invasive species will respond favourably to global warming. 相似文献
7.
MAŁGORZATA OŻGO ZDZISŁAW BOGUCKI 《Biological journal of the Linnean Society. Linnean Society of London》2011,104(2):462-470
At the eastern margins of the geographical distribution in Europe, populations of Cepaea nemoralis are sparse and limited to urban environments to which they are possibly confined by relatively warmer climates. In 1999 we introduced 1101 C. nemoralis individuals originating from nine urban populations to a rural location in the area. The snails established a viable population, which suggests that confinement to urban settings is dispersal‐ rather than climate‐limited. The snails filled available habitats at a rate of approximately 400–600 m2 year?1. On the whole, morph frequencies remained remarkably stable; changes that occurred are attributable to segregation of alleles or chromosomes. However, snails responded to habitat heterogeneity: consistent and predictable divergence occurred between habitat types, such that light‐shelled snails were repeatedly more frequent in the open than in adjoining shaded habitats. This suggests the operation of climatic and/or visual selection. As the whole area encompassing seven distinct habitat patches was only 0.3 ha, and the maximum duration of population divergence was only 11 years (fewer than four snail generations), these results indicate extremely small temporal and spatial scales of adaptation during initial phases of population establishment and spread. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 462–470. 相似文献
8.
Gisela C Stotz Cristian Salgado-Luarte Alonso T Vigil Henry J De La Cruz Víctor Pastn-Marambio Ernesto Gianoli 《Annals of botany》2021,127(5):669
Background and AimsAridity is increasing in many regions of the world, but microclimatic conditions may buffer plant communities from the direct effects of decreased precipitation, creating habitat islands. However, reduced precipitation can also impact these communities indirectly by decreasing the suitability of the surrounding habitat, thus limiting incoming propagules and increasing the chances of population decline and species loss. We test whether decreased precipitation results in loss of species and functional diversity within habitat islands, evaluating in particular whether declines in species diversity and abundance are less likely to result in loss of functional diversity if species/individual loss is stochastic (i.e. independent of species/individual traits) and communities/populations are functionally redundant.MethodsLomas communities are discrete plant communities embedded in the Atacama Desert, maintained by the microclimatic conditions created by fog. We recorded species and functional diversity in six Lomas communities along a 500 km long precipitation gradient in northern Chile. Functional traits were measured in 20 individuals per species, in those species that accounted for approx. 75 % of the abundance at each site. We calculated functional diversity and functional redundancy of the community, and intraspecific functional variation.Key ResultsDecreased precipitation was associated with lower species diversity and lower species abundances. However, no traits or functional strategies increased or decreased consistently with precipitation, suggesting stochastic species/individual loss. Species with stress-tolerant strategies were predominant in all sites. Although species diversity decreased with decreasing precipitation, functional diversity remained unchanged. Lower functional redundancy in the drier sites suggests that mainly functionally redundant species were lost. Likewise, intraspecific functional variation was similar among communities, despite the lower species abundance in drier sites.ConclusionsDecreased precipitation can impact habitat island communities indirectly by decreasing the suitability of the surrounding habitat. Our results support the idea that a stochastic loss of species/individuals from functionally redundant communities and populations does not result in loss of functional diversity. 相似文献
9.
10.
HARALD PAULI MICHAEL GOTTFRIED KARL REITER CHRISTIAN KLETTNER GEORG GRABHERR 《Global Change Biology》2007,13(1):147-156
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains. 相似文献