首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

3.
The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.  相似文献   

4.
We have previously found that bronchial epithelial cells express CCR3 whose signaling elicits mitogen-activated protein (MAP) kinase activation and cytokine production. Several investigators have focused on the signaling crosstalk between G protein-coupled receptors (GPCRs) and epidermal growth factor receptor (EGFR) in cancer cells. In this study, we investigated the role of EGFR in CCR3 signaling in the bronchial epithelial cell line NCI-H292. Eotaxin (1-100 nM) induced dose-dependent tyrosine phosphorylation of EGFR in NCI-H292 cells. Pretreatment of the cells with the EGFR inhibitor (AG1478) significantly inhibited the MAP kinase phosphorylation induced by eotaxin. Eotaxin stimulated IL-8 production, which was inhibited by AG1478. The transactivation of EGFR through CCR3 is a critical pathway that elicits MAP kinase activation and cytokine production in bronchial epithelial cells. The delineation of the signaling pathway of chemokines will help to develop a new therapeutic strategy to allergic diseases including bronchial asthma.  相似文献   

5.
The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.  相似文献   

6.
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR).METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs.RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M.CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.  相似文献   

7.

Background  

Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant).  相似文献   

8.
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis.  相似文献   

9.
Interferon gamma (IFNγ) is known to inhibit the proliferation of some transformed cell lines. Recently, we demonstrated the transactivation of the epidermal growth factor receptor (EGFR) in response to IFNγ (Burova et al., 2007) and provided direct evidence for the dependence of IFNγ-induced EGFR transactivation on the EGFR expression level in epithelial cells (Gonchar et al., 2008). This study examines an antiproliferative effect of IFNγ on human epithelial cell lines—A431 and HeLa that express high levels of EGFR, as well as HEK293 that expresses low levels of EGFR. To characterize the IFNγ-induced changes in these cells, we studied cell growth, the cell cycle, and induction of apoptosis. The response to IFNγ differed in the compared cell lines; cell growth was inhibited in both A431 and HeLa cells, but not in HEK293 cells, as was shown by the cell count and MTT. The cell-cycle phases analyzed by flow cytometry were disturbed in A431 and HeLa cells in response to IFNγ. On the contrary, in HEK293 cells, the IFNγ treatment did not alter distribution by cell cycle phases. Our results indicate that IFNγ produces an antiproliferative effect that depends on the increased expression of EGFR in A431 and HeLa cells. Furthermore, it was demonstrated that IFNγ induced the caspase 3 activation in A431 cells, which suggests the involvement of active caspase 3 in the IFNγ-induced apoptosis.  相似文献   

10.
Interferon gamma (IFNgamma) is known to inhibit proliferation of certain transformed cell lines. Recently, we have demonstrated the transactivation of the epidermal growth factor receptor (EGFR) in response to IFNgamma (Burova et al., 2007) and provided direct evidence for the dependence of IFNgamma-induced EGFR transactivation upon EGFR expression level in epithelial cells (Gonchar et al., 2008). This study examines an antiproliferative effect of IFNgamma on human epithelial cells lines A431 and HeLa which express high levels of EGFR, as well as HEK293, which expresses low levels of EGFR. We characterized the IFNgamma-induced changes in these cells by studying cell growth, the cell cycle and induction of apoptosis. The response to IFNgamma differed in the tested cell lines: cell growth was inhibited in both A431 and HeLa cells, but not in HEK293 cells, as shown by cell counts and MTT. The cell cycle phases analyzed by flow cytometry were disturbed in A431 and HeLa cells in response to IFNgamma. In contrast, IFNgamma treatment did not alter distribution by cell cycle phases in HEK293. Our results indicate that IFNgamma exhibit an antiproliferative effect depending on the increased expression of EGFR in A431 and HeLa cells. Further, it was demonstrated that IFNgamma induced the caspase 3 activation in A431 cells, suggesting an involvement of active caspase 3 in IFNgamma-induced apoptosis.  相似文献   

11.
Glioblastoma multiforme is a deadly cancer for which current treatment options are limited. The ability of glioblastoma tumor cells to infiltrate the surrounding brain parenchyma critically limits the effectiveness of current treatments. We investigated how microglia, the resident macrophages of the brain, stimulate glioblastoma cell invasion. We first examined the ability of normal microglia from C57Bl/6J mice to stimulate GL261 glioblastoma cell invasion in vitro. We found that microglia stimulate the invasion of GL261 glioblastoma cells by approximately eightfold in an in vitro invasion assay. Pharmacological inhibition of epidermal growth factor receptor (EGFR) strongly inhibited microglia-stimulated invasion. Furthermore, blockade of colony stimulating factor 1 receptor (CSF-1R) signaling using ribonucleic acid (RNA) interference or pharmacological inhibitors completely inhibited microglial enhancement of glioblastoma invasion. GL261 cells were found to constitutively secrete CSF-1, the levels of which were unaffected by epidermal growth factor (EGF) stimulation, EGFR inhibition or coculture with microglia. CSF-1 only stimulated microglia invasion, whereas EGF only stimulated glioblastoma cell migration, demonstrating a synergistic interaction between these two cell types. Finally, using PLX3397 (a CSF-1R inhibitor that can cross the blood-brain barrier) in live animals, we discovered that blockade of CSF-1R signaling in vivo reduced the number of tumor-associated microglia and glioblastoma invasion. These data indicate that glioblastoma and microglia interactions mediated by EGF and CSF-1 can enhance glioblastoma invasion and demonstrate the possibility of inhibiting glioblastoma invasion by targeting glioblastoma-associated microglia via inhibition of the CSF-1R.  相似文献   

12.
13.
Gastrin-releasing peptide (GRP) is a mitogen for lung epithelial cells and initiates signaling through a G-protein-coupled receptor, gastrin-releasing peptide receptor (GRPR). Because GRPR transactivates the epidermal growth factor receptor (EGFR), we investigated induction by GRP of Akt, an EGFR-activated signaling pathway, and examined effects of GRP on viability of non-small cell lung carcinoma (NSCLC) cells exposed to the EGFR tyrosine kinase inhibitor gefitinib. GRP induced Akt activation primarily through c-Src-mediated transactivation of EGFR. Transfection of dominant-negative c-Src abolished GRP-induced EGFR and Akt activation. GRP induced release of amphiregulin, and pre-incubation with human amphiregulin neutralizing antibody eliminated GRP-induced Akt phosphorylation. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 completely blocked GRP-initiated Akt phosphorylation. These results suggest that GRP stimulates Akt activation primarily via c-Src activation, followed by extracellular release of the EGFR ligand amphiregulin, leading to the activation of EGFR and PI3K. Pretreatment of NSCLC cells with GRP resulted in an increase in the IC(50) of gefitinib of up to 9-fold; this protective effect was mimicked by the pretreatment of cells with amphiregulin and reversed by Akt or PI3K inhibition. GRP appears to rescue NSCLC cells exposed to gefitinib through release of amphiregulin and activation of the Akt pathway, suggesting GRPR and/or EGFR autocrine pathways in NSCLC cells may modulate therapeutic response to EGFR inhibitors.  相似文献   

14.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

15.
Rhinovirus infection is the most common cause of acute exacerbations of inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease, where it provokes steroid refractory and abnormally intense neutrophilic inflammation that can be life threatening. Epidermal growth factor receptor (EGFR) expression correlates with disease severity and neutrophil infiltration in these conditions. However, the role of EGFR signaling in rhinovirus infection is unknown. We measured the key determinants of neutrophilic inflammation interleukin (IL)-8 and ICAM-1 in rhinovirus (RV16 serotype)-infected bronchial epithelial cells, BEAS-2B. RV16 infection stimulated IL-8 and ICAM-1 expression, which was further elevated (2-fold) by transient up-regulation of EGFR levels. Detection of viral RNA by quantitative real time PCR confirmed that enhanced expression was not associated with increased viral replication. EGFR ligands (epiregulin, amphiregulin, and heparin-binding epidermal growth factor) were induced by RV16 infection, and inhibition of metalloproteases responsible for ligand shedding partially suppressed this response. The EGFR inhibitor AG1478, completely blocked IL-8 and ICAM-1 expression to basal levels, as did the specific Erk1/2 inhibitor U0126. The p38 mitogen-activated protein kinase inhibitor SB203580 blocked IL-8 secretion but not ICAM-1 expression, whereas the PI3K inhibitor wortmannin was ineffective in both responses. Kinase inactive K721R EGFR, which is selectively deficient in STAT signaling, reversed RV16 responses associated with EGFR overexpression. In conclusion, RV16 infection rapidly promotes induction of EGFR ligands and utilizes EGFR signaling to increase IL-8 and ICAM-1 levels. These results suggest that targeting EGFR may provide a selective therapy that dampens neutrophil-driven inflammation without compromising essential antiviral pathways mediated by pathogen recognition receptors such as TLR3.  相似文献   

16.
We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.  相似文献   

17.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

18.
19.
Substitution of phenylalanine for tyrosine at codon 809 (Y809F) of the human colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) impairs ligand-stimulated tyrosine kinase activity, prevents induction of c-MYC and cyclin D1 genes, and blocks CSF-1-dependent progression through the G1 phase of the cell cycle. We devised an unbiased genetic screen to isolate genes that restore the ability of CSF-1 to stimulate growth in cells that express mutant CSF-1R (Y809F). This screen led us to identify a truncated form of the murine type Ibeta phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta). This truncated protein lacks residues 1 to 238 of mPIP5K-Ibeta and is catalytically inactive. When we transfected cells expressing CSF-1R (Y809F) with mPIP5K-Ibeta (delta1-238), CSF-1-dependent induction of c-MYC and cyclin D1 was restored and ligand-dependent cell proliferation was sustained. CSF-1 normally triggers the rapid disappearance of CSF-1R (Y809F) from the cell surface; however, transfection of cells with mPIP5K-Ibeta (delta1-238) stabilized CSF-1R (Y809F) expression on the cell surface, resulting in elevated levels of ligand-activated CSF-1R (Y809F). These results suggest a role for PIP5K-Ibeta in receptor endocytosis and that the truncated enzyme compensated for a mitogenically defective CSF-1R by interfering with this process.  相似文献   

20.
BackgroundEpidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects.MethodsSignaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2′-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by β-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation.ResultsGefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH).ConclusionHRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments.General significanceWe furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号