首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background

Based on the ethnomedicinal uses and the effective outcomes of natural products in various diseases, this study was designed to evaluate Isodon rugosus as possible remedy in oxidative stress, alzheimer’s and other neurodegenerative diseases. Acetylecholinestrase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of crude methanolic extract (Ir.Cr), resultant fractions (n-hexane (Ir.Hex), chloroform (Ir.Cf), ethyl acetate (Ir.EtAc), aqueous (Ir.Aq)), flavonoids (Ir.Flv) and crude saponins (Ir.Sp) of I. rugosus were investigated using Ellman’s spectrophotometric method. Antioxidant potential of I. rugosus was determined using DPPH, H2O2 and ABTS free radicals scavenging assays. Total phenolic and flavonoids contents of plant extracts were determined and expressed in mg GAE/g dry weight and mg RTE/g of dry sample respectively.

Results

Among different fractions Ir.Flv and Ir.Cf exhibited highest inhibitory activity against AChE (87.44 ± 0.51, 83.73 ± 0.64%) and BChE (82.53 ± 0.71, 88.55 ± 0.77%) enzymes at 1 mg/ml with IC50 values of 45, 50 for AChE and 40, 70 μg/ml for BChE respectively. Activity of these fractions were comparable to galanthamine causing 96.00 ± 0.30 and 88.61 ± 0.43% inhibition of AChE and BChE at 1 mg/ml concentration with IC50 values of 20 and 47 μg/ml respectively. In antioxidant assays, Ir.Flv, Ir.Cf, and Ir.EtAc demonstrated highest radicals scavenging activities in DPPH and H2O2 assays which were comparable to ascorbic acid. Ir.Flv was found most potent with IC50 of 19 and 24 μg/ml against DPPH and H2O2 radicals respectively. Whereas antioxidant activates of plant samples against ABTS free radicals was moderate. Ir.Cf, Ir.EtAc and Ir.Cr showed high phenolic and flavonoid contents and concentrations of these compounds in different fractions correlated well to their antioxidant and anticholinestrase activities.

Conclusion

It may be inferred from the current investigations that the Ir.Sp, Ir.Flv and various fractions of I. rugosus are good sources of anticholinesterase and antioxidant compounds. Different fractions can be subjected to activity guided isolation of bioactive compounds effective in neurological disorders.  相似文献   

2.
The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17–22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical, mechanical, and histological changes after acute myocardial ischemia. The induction of antioxidant enzymes and the anti-inflammatory cytokine TGF-β1 may play a pivotal role in the mechanism of action of Zn(ASA)2.  相似文献   

3.

Background

Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively.

Results

In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL).

Conclusions

These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.  相似文献   

4.
Brassinosteroids (BR) play diverse roles in the regulation of plant growth and development. BR promotes plant growth by triggering cell division and expansion. However, the effect of exogenous BR application on the leaf size and expansion of tobacco is unknown. Tobacco seedlings are treated with different concentrations of exogenous 2,4-epibrassinolide (EBL) [control (CK, 0 mol L−1), T1 (0.5 × 10−7 mol L−1), and T2 (0.5 × 10−4 mol L−1)]. The results show that T1 has 17.29% and T2 has 25.99% more leaf area than control. The epidermal cell area is increased by 24.40% and 17.13% while the number of epidermal cells is 7.06% and 21.06% higher in T1 and T2, respectively, relative to control. So the exogenous EBL application improves the leaf area by increasing cell numbers and cell area. The endogenous BR (7.5 times and 68.4 times), auxin (IAA) (4.03% and 25.29%), and gibberellin (GA3) contents (84.42% and 91.76%) are higher in T1 and T2, respectively, in comparison with control. Additionally, NtBRI1, NtBIN2, and NtBES1 are upregulated showing that the brassinosteroid signaling pathway is activated. Furthermore, the expression of the key biosynthesis-related genes of BR (NtDWF4), IAA (NtYUCCA6), and GA3 (NtGA3ox-2) are all upregulated under EBL application. Finally, the exogenous EBL application also upregulated the expression of cell growth-related genes (NtCYCD3;1, NtARGOS, NtGRF5, NtGRF8, and NtXTH). The results reveal that the EBL application increases the leaf size and expansion by promoting the cell expansion and division through higher BR, IAA, and GA3 contents along with the upregulation of cell growth-related genes. The results of the study provide a scientific basis for the effect of EBL on tobacco leaf growth at morphological, anatomical, biochemical, and molecular levels.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00971-x.  相似文献   

5.
To investigate physiological and biochemical changes of thrips-resistant alfalfa (Medicago sativa L. cv. Gan-nong No. 9), we aimed at clarifying the response mechanisms of alfalfa against thrips. Medicago sativa L. cv. including thrips-resistant Gan-nong No.9 (G9), thrips-susceptible Gan-nong No.3 (G3) and highly thrips-susceptible WL363HQ (363) were infested with different thrips densities (3, 5, 7 and 9-thrips per branch). The quantitative change in specific nutrients, secondary metabolites, defensive and antioxidant enzymes were measured at seedling stage of the three alfalfa cultivars. The results showed that with the increase of thrips densities, the damage indices, SS, Pro, flavonoids, tannin and H2O2 in G9, G3 and 363 were significantly increased, but PPO and SOD significantly reduced, compared with CK. Furthermore, the tannin and lignin contents of G9 were significantly higher compared to 363, but SP content was significantly lower than G3 and H2O2 content which was further significantly less compared to 363. Correlation analysis observed that the damage index of the three alfalfa cultivars showed a significant positive association with SS, Pro, flavone, tannin, and H2O2 (P < 0.01), while damage index and DW, Chl (a, b, a + b), PPO and SOD showed a significant negative correlation (P < 0.01). Based on principal component comprehensive evaluation, the 5-thrips adults per branch were the critical inoculation threshold for G9 against thrips injury because the score was – 0.048. These results revealed that thrips damage significantly increased the contents of SS, Pro, flavonoids, tannins and H2O2, as well as significantly declined the activities of PPO and SOD in the three cultivars (P < 0.05), moreover, thrips-resistant G9 markedly accumulated lignin content, POD and CAT activity, inhibited Chl (a + b, b) and SP biosynthesis to resist thrips damage.  相似文献   

6.
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.  相似文献   

7.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

8.

Background

The combination of aclidinium bromide, a long-acting anticholinergic, and formoterol fumarate, a long-acting beta2-agonist (400/12 μg twice daily) achieves improvements in lung function greater than either monotherapy in patients with chronic obstructive pulmonary disease (COPD), and is approved in the European Union as a maintenance treatment. The effect of this combination on symptoms of COPD and exacerbations is less well established. We examined these outcomes in a pre-specified analysis of pooled data from two 24-week, double-blind, parallel-group, active- and placebo-controlled, multicentre, randomised Phase III studies (ACLIFORM and AUGMENT).

Methods

Patients ≥40 years with moderate to severe COPD (post-bronchodilator forced expiratory volume in 1 s [FEV1]/forced vital capacity <70 % and FEV1 ≥30 % but <80 % predicted normal) were randomised (ACLIFORM: 2:2:2:2:1; AUGMENT: 1:1:1:1:1) to twice-daily aclidinium/formoterol 400/12 μg or 400/6 μg, aclidinium 400 μg, formoterol 12 μg or placebo via Genuair™/Pressair®. Dyspnoea (Transition Dyspnoea Index; TDI), daily symptoms (EXAcerbations of Chronic pulmonary disease Tool [EXACT]-Respiratory Symptoms [E-RS] questionnaire), night-time and early-morning symptoms, exacerbations (Healthcare Resource Utilisation [HCRU] and EXACT definitions) and relief-medication use were assessed.

Results

The pooled intent-to-treat population included 3394 patients. Aclidinium/formoterol 400/12 μg significantly improved TDI focal score versus placebo and both monotherapies at Week 24 (all p < 0.05). Over 24 weeks, significant improvements in E-RS total score, overall night-time and early-morning symptom severity and limitation of early-morning activities were observed with aclidinium/formoterol 400/12 μg versus placebo and both monotherapies (all p < 0.05). The rate of moderate or severe HCRU exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg compared with placebo (p < 0.05) but not monotherapies; the rate of EXACT-defined exacerbations was significantly reduced with aclidinium/formoterol 400/12 μg versus placebo (p < 0.01) and aclidinium (p < 0.05). Time to first HCRU or EXACT exacerbation was longer with aclidinium/formoterol 400/12 μg compared with placebo (all p < 0.05) but not the monotherapies. Relief-medication use was reduced with aclidinium/formoterol 400/12 μg versus placebo and aclidinium (p < 0.01).

Conclusions

Aclidinium/formoterol 400/12 μg significantly improves 24-hour symptom control compared with placebo, aclidinium and formoterol in patients with moderate to severe COPD. Furthermore, aclidinium/formoterol 400/12 μg reduces the frequency of exacerbations compared with placebo.

Trial registration

NCT01462942 and NCT01437397 (ClinicalTrials.gov)

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0250-2) contains supplementary material, which is available to authorized users.  相似文献   

9.

Introduction

Both genetic variation in ATP-binding cassette sub-family G member 2 (ABCG2) and intake of fructose-containing beverages are major risk factors for hyperuricemia and gout. This study aimed to test the hypothesis that the ABCG2 gout risk allele 141 K promotes the hyperuricaemic response to fructose loading.

Methods

Healthy volunteers (n = 74) provided serum and urine samples immediately before and 30, 60, 120 and 180 minutes after ingesting a 64 g fructose solution. Data were analyzed based on the presence or absence of the ABCG2 141 K gout risk allele.

Results

The 141 K risk allele was present in 23 participants (31%). Overall, serum urate (SU) concentrations during the fructose load were similar in those with and without the 141 K allele (PSNP = 0.15). However, the 141 K allele was associated with a smaller increase in SU following fructose intake (PSNP <0.0001). Those with the 141 K allele also had a smaller increase in serum glucose following the fructose load (PSNP = 0.002). Higher fractional excretion of uric acid (FEUA) at baseline and throughout the fructose load was observed in those with the 141 K risk allele (PSNP <0.0001). However, the change in FEUA in response to fructose was not different in those with and without the 141 K risk allele (PSNP = 0.39). The 141 K allele effects on serum urate and glucose were more pronounced in Polynesian participants and in those with a body mass index ≥25 kg/m2.

Conclusions

In contrast to the predicted responses for a hyperuricemia/gout risk allele, the 141 K allele is associated with smaller increases in SU and higher FEUA following a fructose load. The results suggest that ABCG2 interacts with extra-renal metabolic pathways in a complex manner to regulate SU and gout risk.

Clinical Trials Registration

The study was registered by the Australian Clinical Trials Registry (ACTRN12610001036000).  相似文献   

10.
Zinc (Zn) is an important micronutrient for the physiology of plants. It is poorly available to the plants in soil solution. A pot experiment was conducted to evaluate effectiveness of various Zn application methods on key enzyme activities and protein content of two contrasting rice genotypes viz., PD16 (Zn efficient) and NDR359 (Zn inefficient). The treatments were, control (0 mg Zn kg−1 soil), soil application (5 mg Zn kg−1 soil), foliar application (0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting), soil (5 mg Zn kg−1 soil) + foliar application of 0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting. Among all the methods tested soil+foliar application of Zn fertilizers was found most effective in increasing superoxide dismutase (SOD) and carbonic anhydrase (CA) activities as well as chlorophyll and protein content in both the rice varieties. NDR359, showed higher enzyme activities and more chlorophyll content in leaves than PD16, when Zn was applied either through foliar spray alone or in soil along with foliar application. Regarding the protein content in grains, PD16 showed higher protein content than NDR359, thus showed better translocation of Zn from leaves to grains.  相似文献   

11.

Background

Rumex species are traditionally used for the treatment of neurological disorders including headache, migraine, depression, paralysis etc. Several species have been scientifically validated for antioxidant and anticholinestrase potentials. This study aims to investigate Rumex hastatus D. Don crude methanolic extract, subsequent fractions, saponins and flavonoids for acetylcholinestrase, butyrylcholinestrase inhibition and diverse antioxidant activities to validate its folkloric uses in neurological disorders. Rumex hastatus crude methanolic extract (Rh. Cr), subsequent fractions; n-hexane (Rh. Hex), chloroform (Rh. Chf), ethyl acetate (Rh. EtAc), aqueous fraction (Rh. Aq), crude saponins (Rh. Sp) and flavonoids (Rh. Fl) were investigated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at various concentrations (125, 250, 500, 1000 μg/mL) using Ellman’s spectrophotometric analysis. Antioxidant potentials of Rh. Sp and Rh. Fl were evaluated using DPPH, H2O2 and ABTS free radical scavenging assays at 62.5, 125, 250, 500, 1000 μg/mL.

Results

All the test samples showed concentration dependent cholinesterase inhibition and radicals scavenging activity. The AChE inhibition potential of Rh. Sp and Rh. Fl were most prominent i.e., 81.67 ± 0.88 and 91.62 ± 1.67 at highest concentration with IC50 135 and 20 μg/mL respectively. All the subsequent fractions exhibited moderate to high AChE inhibition i.e., Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq showed IC50 218, 1420, 75, 115 and 1210 μg/mL respectively. Similarly, against BChE various plant extracts i.e., Rh. Sp, Rh. Fl, Rh. Cr, Rh. Hex, Rh. Chf, Rh. EtAc and Rh. Aq resulted IC50 165, 175, 265, 890, 92, 115 and 220 μg/mL respectively. In DPPH free radical scavenging assay, Rh. Sp and Rh. Fl showed comparable results with the positive control i.e., 63.34 ± 0.98 and 76.93 ± 1.13% scavenging at 1 mg/mL concentration (IC50 312 and 104 μg/mL) respectively. The percent ABTS radical scavenging potential exhibited by Rh. Sp and Rh. Fl (1000 μg/mL) were 82.58 ± 0.52 and 88.25 ± 0.67 with IC50 18 and 9 μg/mL respectively. Similarly in H2O2 scavenging assay, the Rh. Sp and Rh. Fl exhibited IC50 175 and 275 μg/mL respectively.

Conclusion

The strong anticholinesterase and antioxidant activities of Rh. Sp, Rh. Fl and various fractions of R. hastatus support the purported ethnomedicinal uses and recommend R. hastatus as a possible remedy for the treatment of AD and neurodegenerative disorders.  相似文献   

12.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

13.
Being a cost-effective and environmentally benign technology, vermifiltration has significantly replaced the available conventional wastewater remediation methods in many cases over the last few decades. The present work emphasizes on the investigation of the nitrogen transformation dynamics, in addition to the organic carbon abatement in the designed high rate hybrid vermifilter. Moreover, the economical sustainability of the vermifiltration technology has also been enlightened by creating a bridge with the concept of circular bio-economy. The designed high rate macrophyte-assisted vermifilter (MAVF) ascertained significant high nitrogen and organic carbon removal efficiencies from the real domestic sewage, considering the chemical oxygen demand (COD) of the influent and hydraulic loading rate (HLR) as the input variables. The designed MAVF facilitated the maximum ammonium nitrogen (NH4+-N), organic nitrogen, and total kjeldahl nitrogen removal efficiencies up to 98.2 ± 0.70%, 100%, and 99 ± 0.47%, respectively when COD of the influent and HLR were 200 ± 25 mg/L and 3 ± 0.1 m3/m2-d, respectively. On the other hand, substantial enhancement in the nitrate nitrogen (NO3-N) in the effluent (73 ± 10.55 times its influent concentration) was observed with influent COD of 200 ± 25 mg/L and HLR of 7 ± 0.2 m3/m2-d. When the influent COD and HLR were maintained at 700 ± 45 mg/L and 3 ± 0.1 m3/m2-d, respectively, the highest total nitrogen removal of 87 ± 2.25% was obtained. Alternatively, the influent COD of 200 ± 25 mg/L and HLR of 3 ± 0.1 m3/m2-d yielded the highest COD removal efficiency of 77 ± 1.59%. Hence, the outcome of the present research work strengthens the suitability of the vermifiltration technology as an economically and ecologically sound natural wastewater bio-remediation technology for the treatment of domestic wastewater.  相似文献   

14.
Detoxification of Cr(VI) under alkaline pH requires attention due to the alkaline nature of many effluents. An alkaliphilic gram-positive Bacillus subtilis isolated from tannery effluent contaminated soil was found to grow and reduce Cr(VI) up to 100% at an alkaline pH 9. Decrease in pH to acidic range with growth of the bacterium signified the role played by metabolites (organic acids) in chromium resistance and reduction mechanism. The XPS and FT-IR spectra confirmed the reduction of Cr(VI) by bacteria into +3 oxidation state. Chromate reductase assay indicated that the reduction was mediated by constitutive membrane bound enzymes. The kinetics of Cr(VI) reduction activity derived using the monod equation proved (Ks = 0.00032) high affinity of the organism to the metal. This study thus helped to localize the reduction activity at subcellular level in a chromium resistant alkaliphilic Bacillus sp.  相似文献   

15.
IntroductionBoth sugar-sweetened beverage (SSB) intake and body mass index (BMI) are associated with elevated serum urate concentrations and gout risk. The aim of this study was to determine whether the associations of SSB intake with serum urate and gout are moderated by BMI.MethodThe effects of chronic SSB intake on serum urate and gout status were analysed in a large cross-sectional population study. The effects of an acute fructose load on serum urate and fractional excretion of uric acid (FEUA) were examined over 180 minutes in a short-term intervention study. In all analyses, the responses were compared in those with BMI <25 mg/kg2 (low BMI) and ≥25 mg/kg2 (high BMI).ResultsIn the serum urate analysis (n = 12,870), chronic SSB intake was associated with increased serum urate in the high BMI group, but not in the low BMI group (Pdifference = 3.6 × 10−3). In the gout analysis (n = 2578), chronic high SSB intake was associated with gout in the high BMI group, but not in the low BMI group (Pdifference = 0.012). In the acute fructose loading study (n = 76), serum urate was increased in the high BMI group at baseline and throughout the observation period (PBMI group <0.0001), but there were similar acute serum urate increases in both BMI groups in response to the fructose load (Pinteraction = 0.99). The baseline FEUA was similar between the two BMI groups. However, following the fructose load, FEUA responses in the BMI groups differed (Pinteraction <0.0001), with increased FEUA at 120 minutes and 180 minutes in the low BMI group and reduced FEUA at 60 minutes in the high BMI group.ConclusionsThese data suggest that BMI influences serum urate and gout risk in response to chronic SSB intake, and renal tubular uric acid handling in response to an acute fructose load. In addition to many other health benefits, avoidance of SSBs may be particularly important in those with overweight/obesity to prevent hyperuricaemia and reduce gout risk.

Trials registration

Australian Clinical Trials Registry ACTRN12610001036000. Registered 24 November 2010.  相似文献   

16.
Soil bacteria and fungi are key drivers of carbon released from soils to the atmosphere through decomposition of plant-derived organic carbon sources. This process has important consequences for the global climate. While global change factors, such as increased temperature, are known to affect bacterial- and fungal-mediated decomposition rates, the role of trophic interactions in affecting decomposition remains largely unknown. We designed synthetic microbial communities consisting of eight bacterial and eight fungal species and tested the influence of predation by a model protist, Physarum polycephalum, on litter breakdown at 17 and 21 °C. Protists increased CO2 release and litter mass loss by ~35% at 17 °C lower temperatures, while they only had minor effects on microbial-driven CO2 release and mass loss at 21 °C. We found species-specific differences in predator–prey interactions, which may affect microbial community composition and functioning and thus underlie the impact of protists on litter breakdown. Our findings suggest that microbial predation by fast-growing protists is of under-appreciated functional importance, as it affects decomposition and, as such, may influence global carbon dynamics. Our results indicate that we need to better understand the role of trophic interactions within the microbiome in controlling decomposition processes and carbon cycling.Subject terms: Climate-change impacts, Soil microbiology, Microbial ecology

Soil microorganisms, mainly bacteria and fungi, are major drivers of soil carbon cycling through their decomposing activity of plant-derived carbon [1, 2] and their role in soil carbon stabilization [3, 4]. This has important consequences for atmospheric carbon concentrations and thereby, for ongoing climate change [5, 6]. It is well established that large-scale abiotic factors, such as climate, affect microbial activity and thereby, decomposition rates [7]. More recently it was shown that climate-independent variation in local-scale factors can drive broad-scale variation in decomposition rates [8]. Among these might be microbial predators that vary and affect microbial community composition and functioning at the local scale [9]. However, how microbial predators alter litter breakdown remains largely unknown.Protists are major microbial predators of soil bacteria and to some extent fungi [10]. Protists are the taxonomically most diverse eukaryotes and occupy all key functional roles in soil food webs [10]. Most soil protists are phagotrophic [11] and prey on bacteria and fungi, which leads to changes in microbial biomass, activity, and community structure [10]. This is likely to have important functional consequences, including impacts on litter decomposition processes and thereby, the global carbon cycle. However, there is little experimental evidence underpinning how protists impact decomposition. Moreover, both protist and microbial activity are affected by temperature [9, 12], but whether temperature also modifies protist-induced changes in microbial functioning remains unknown.To test the role of protist predation on microbial-driven decomposition we inoculated microcosms of synthetic microbial communities consisting of sixteen bacterial and fungal species (Tables S1 and S2) to sterilized oak litter (Quercus robur) at both 17 and 21 °C. After one week we added protists of the model species Physarum polycephalum at three different concentrations (no protists, and low, medium, and high concentration). This resulted in a full-factorial design with 16 treatments: 2 microbial inocula (yes/no) × 2 temperatures (17/21 °C) × 4 protist concentrations (Table S3) and we used six replicates per treatment. Microcosms without microbial inocula were established to test for successful establishment of the synthetic microbial community and were not used for further analyses as they did not remain sterile. For each microcosm, we measured CO2 production, litter mass loss and litter nitrogen and carbon content of the remaining litter. See supplementary methods for further details.Before the addition of protists, microcosms with bacteria and fungi produced more CO2 than microbial-free ones (F1,92 = 431.16, p < 0.001), and this effect was not different between temperatures (F1,92 = 0.04, p = 0.846; Fig. S1), indicating successful establishment of a synthetic microbial community after inoculation. After protistan addition, there was no interactive effect of protists and temperature on CO2 production (F3,40 = 1.48, p = 0.234). However, both increased temperature (F1,40 = 14.96, p < 0.001) and presence of protists irrespective of their concentration (F3,40 = 3.24, p = 0.032) increased CO2 production (Fig. 1a). A posthoc analysis indicated that protist addition effects appeared stronger at lower than at higher temperatures (Fig. 1; please note that boxplots highlight medians while posthoc tests compare means). An interaction between the protist and temperature treatment affected litter mass loss (F3,40 = 10.50, p < 0.001; Fig. 1b), indicating that the addition of protists at all concentrations increased litter mass loss at 17 °C by more than 35% on average, but not at 21 °C (Fig. 1b). The addition of protists did not affect litter carbon (C) (F3,40 = 0.55, p = 0.653) and nitrogen (N) content (F3,40 = 0.03, p = 0.993) and the litter C:N ratio (F3,40 = 0.04, p = 0.990) at the end of the experiment (Fig. S2). Litter N content was higher at 21 than at 17 °C, indicating higher N loss during decomposition at lower temperatures (F1,30 = 7.42, p = 0.010; Fig. S2b), resulting in higher C:N ratios at 17 °C than at 21 °C (F1,40 = 8.08, p = 0.007).Open in a separate windowFig. 1Changes in microbial CO2 production and litter decomposition rates as induced by protist predators.Boxplots showing (a) cumulative CO2 respiration (measured from the addition of protists until the end of the experiment) and (b) litter mass loss for microcosms with no protists or low, medium (mid) or high concentrations of protists (x-axis) at 17° and 21 °C. Different letters above the boxes indicate significant differences (p < 0.05) between treatments, as was indicated in a Tukey HSD posthoc test. Tukey tests were carried out across the protists × temperature interactions, so letters can be compared across facets.Interaction-assays in split-petri dishes to test for volatile-induced microbial effects (Fig. S3) showed that protist growth (plasmodial length) was affected by bacterial (F5,23 = 63.22, p < 0.001) and fungal volatiles (F5,24 = 12.29, p < 0.001; Fig. 2). Presence of Collimonas pratensis T91, Pseudomonas sp. AD21 and Trichoderma citrinoviride reduced protist growth most strongly (Fig. 2). The overall negative effects of bacteria and fungi on protists likely through volatiles contradict with the variable effects of volatiles on other protist species which ranged from stimulation to inhibition [13]. But as inhibition differed between microbial species, some potentially efficient decomposers might benefit through a reduction of competition from more easily preyed microbes, which could explain the observed increased decomposition rates. Yet, other mechanisms are likely to contribute to increased decomposition in presence of predators, such as predation-induced increased microbial activity or alternative enzyme production- details to be explored in future studies.Open in a separate windowFig. 2Bacterial and fungal long-distance effects on protist growth.Boxplots showing plasmodial length of the model protist Physarum polycephalum in response to different (a) bacterial and (b) fungal taxa (x-axis) that were part of the microbial decomposer communities (Tables S1 and S2). C is the control with only nutrient agar without bacteria (left) or potato dextrose agar without fungi (right). Different letters above the bars indicate that protist responses differed significantly (p < 0.05) between the microbial species in a Tukey HSD test. Tukey HSD tests were carried out for bacteria and fungi separately, therefore letters should be compared within panels only.Our results support previous findings showing that predator–prey interactions within the microbiome affect microbial-derived CO2 production [14], but we extend this knowledge and show that this effect tends to of lower importance at higher temperature. Furthermore, we now show that microbial predators alter litter decomposition in a temperature-dependent manner, with an increased importance at lower temperature. This result extends the known importance of larger-sized soil animals in increasing litter decomposition [15, 16] and contrasts previous findings that microscopic predators (mostly protists and nematodes) have a limited effect on litter breakdown [16]. Mechanistically, protists might increase decomposition via microbe-specific predator–prey interactions [10] that change microbial community composition and functioning [17]. Our interaction-assays suggests that microbial predator–prey interactions mediated by volatiles could differ, which might benefit some efficient microbial decomposers.The effect of protists on litter decomposition was strongest at lower temperatures, contradicting previous findings that larger soil animals have increased effects on decomposition at higher temperatures [18]. This discrepancy might be explained by the higher microbial diversity in our model communities compared to often single-decomposer model species used before, in which predation might favor metabolically active microorganisms [10]. The effect of predation on microbial-driven decomposition seems to differ between protists and soil animals, as soil animals were shown to have limited effects on decomposition rates [16]. The increased importance of protist predation on microbial decomposition at lower temperatures suggest a more profound role of predation on carbon cycling in colder, non-tropical climates that host most microbial biomass [19] and store most carbon [20]. If this pattern can be confirmed with a wider range of protists, and in natural soils rather than this simplified laboratory assay, these microbial predators may play a key role in accelerating the global carbon cycle. Further studies should test exactly those by using realistic climate scenarios, more diverse protists and microbial decomposers, and in natural settings to untangle the importance of protists on decomposition and the carbon cycle. In turn, even more detailed laboratory analyses are needed to unreliably determine the exact mechanisms of how protists affect decomposition.In summary, we reveal microbiome predation by protists as a key driver of microbial-driven decomposition with potential impacts on the global carbon cycle. Further integrated microbiome analyses are needed to investigate how and under which conditions microbial predation affects litter decomposition and if and how protists contribute to the global carbon cycle.  相似文献   

17.
With respect to the significance of improving hybrid corn performance under stress, this experiment was conducted at the Islamic Azad University, Arak Branch, Iran. A complete randomized block design with three levels of irrigations (at 100%, 75% and 50% crop water requirement), two levels of arbuscular mycorrhizal (AM) fungi (Glumus intraradisis) (including control), and three levels of zinc (Zn) sulfate (0, 25 and 45 kg ha−1), was performed. Results of the 2-year experiments indicated that irrigation treatment significantly affected corn yield and its components at P = 1%. AM fungi and increasing Zn levels also resulted in similar effects on corn growth and production. Although AM fungi did not significantly affect corn growth at the non-stressed irrigation treatment, at moderate drought stress AM fungi significantly enhanced corn quality and yield relative to the control treatment. The combined effects of AM fungi and Zn sulfate at 45 kg ha−1 application significantly affected corn growth and production. In addition, the tripartite treatments significantly enhanced corn yield at P = 1%. Effects of Zn and AM fungi on plant growth under drought stress is affected by the stress level.  相似文献   

18.
Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0–6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0–1.2 fold) in belowground part of V. jatamansi, and decreased (1.1–1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25–30 days and combined stress for 5–15 days significantly (p < 0.05) increased linalool content to 6.2–6.5 fold and 8.3–19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs.Supplementary Information The online version contains supplementary material available at 10.1007/s12298-021-01027-w.  相似文献   

19.
Vigna mungo (L.) Hepper commonly known as blackgram is an important legume crop with good quality dietary proteins and vitamins. Low production of blackgram in the chromium rich soil of Odisha is a serious concern against its demand. Chromium (VI) was tested on V. mungo var. B3-8-8 at 100, 150, 200, 250 and 300 µM concentration on growth, anti-oxidative enzymes and chromium content at 15, 30 and 45 d of treatments. Seed germination and growth decreased with increase dose and duration. Cr uptake induced oxidative burst with significant increase of osmolytes was observed in cell at lower doses but failed to adjust homeostasis at higher dose. Increase of GPX and SOD and decrease of CAT was observed as dose dependent. Increased protein content was detected in < 200 µM Cr concentration whereas, significant decrease of protein was noted thereafter. Down regulation of proteins (29.2 kDa and 32.6 kDa) was observed at > 250 µM of Cr. Total Cr uptake was greater in root than in shoot which might be due to poor translocation of heavy metal or detoxification. Thus, blackgram was able to maintain homeostasis at lower concentrations of Cr by activating the cascade of enzymes following cellular detoxification mechanism.Supplementary InformationThe online version of this article contains supplementary material available at (10.1007/s12298-021-00941-3)  相似文献   

20.

Background

The study was conducted to evaluate the in vitro antimicrobial activity, cytotoxic, and membrane stabilization activities, and in vivo antiemetic and antipyretic potentials of ethanolic extract, n-hexane and ethyl acetate soluble fractions of Spilanthes paniculata leaves for the first time widely used in the traditional treatments in Bangladesh.

Results

In antipyretic activity assay, a significant reduction (P < 0.05) was observed in the temperature in the mice tested. At dose 400 mg/kg-body weight, the n-hexane soluble fraction showed the effect (36.7 ± 0.63°C ) as like as the standard (dose 150 mg/kg-body weight) after 5 h of administration. Extracts showed significant (P < 0.001) potential when tested for the antiemetic activity compared to the standard, metoclopramide. At dose 50 mg/kg-body weight, the standard showed 67.23% inhibition, whereas n-hexane and ethyl acetate soluble fractions showed 37.53% and 24.93% inhibition of emesis respectively at dose 400 mg/kg-body weight. In antimicrobial activity assay, the n-hexane soluble fraction (400 μg/disc) showed salient activity against the tested organisms. It exerts highest activity against Salmonella typhi (16.9 mm zone of inhibition); besides, crude, and ethyl acetate extracts showed resistance to Bacillus cereus and Bacillus subtilis, and Vibrio cholera respectively. All the extracts were tested for lysis of the erythrocytes. At the concentration of 1mg/ml, ethanol extract, and n-hexane and ethyl acetate soluble fractions significantly inhibited hypotonic solution induced lysis of the human red blood cell (HRBC) (27.406 ± 3.57, 46.034 ± 3.251, and 30.72 ± 5.679% respectively); where standard drug acetylsalicylic acid (concentration 0.1 mg/ml) showed 77.276 ± 0.321% inhibition. In case of heat induced HRBC hemolysis, the plant extracts also showed significant activity (34.21 ± 4.72, 21.81 ± 3.08, and 27.62 ± 8.79% inhibition respectively). In the brine shrimp lethality bioassay, the n-hexane fraction showed potent (LC50 value 48.978 μg/ml) activity, whereas ethyl acetate fraction showed mild (LC50 value 216.77 μg/ml) cytotoxic activity.

Conclusions

Our results showed that the n-hexane extract has better effects than the other in all trials. In the context, it can be said that the leaves of S. paniculata possess remarkable pharmacological effects, and justify its folkloric use as antimicrobial, antipyretic, anti-inflammatory, and antiemetic agent. Therefore, further research may be suggested to find possible mode of action of the plant part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号