首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serotonin 2A receptor (5-HT2AR) is an important member of the G-protein coupled receptor (GPCR) family involved in an array of neuromodulatory functions. Although the high-resolution structures of truncated versions of GPCRs, captured in ligand-bound conformational states, are available, the structures lack several functional regions, which have crucial roles in receptor response. Here, in order to understand the structure and dynamics of the ligand-free form of the receptor, we have performed meticulous modeling of the 5-HT2AR with the third intracellular loop (ICL3). Our analyses revealed that the ligand-free ground state structure of 5-HT2AR has marked distinction with ligand-bound conformations of 5-HT2 subfamily proteins and exhibits extensive backbone flexibility across the loop regions, suggesting the importance of purifying the receptor in its native form for further studies. Hence, we have standardized a strategy that efficiently increases the expression of 5-HT2AR by infecting Sf9 cells with a very low multiplicity of infection of baculovirus in conjunction with production boost additive and subsequently, purify the full-length receptor. Furthermore, we have optimized the selective over-expression of glycosylated and nonglycosylated forms of the receptor merely by switching the postinfection growth time, a method that has not been reported earlier.  相似文献   

2.
The 5-hydroxytryptamine 2A receptor (5-HT2AR) undergoes constitutive and agonist-dependent internalization. Despite many advances in our understanding of G protein-coupled receptor trafficking, the exact mechanism of endocytic sorting of G protein-coupled receptors remains obscure. Recently, we have reported a novel finding documenting a global role for the ubiquitin ligase c-Cbl in regulating vesicular sorting of epidermal growth factor receptor (Baldys, A., Göoz, M., Morinelli, T. A., Lee, M. H., Raymond, J. R., Jr., Luttrell, L. M., and Raymond, J. R., Sr. (2009) Biochemistry 48, 1462–1473). Thus, we tested the hypothesis that c-Cbl might play a role in 5-HT2AR recycling. In this study, we demonstrated an association of 5-HT2AR with c-Cbl. Furthermore, down-regulation of c-Cbl by RNA interference blocked efficient recycling of 5-HT2AR to the plasma membrane. Immunofluorescence microscopy revealed that 5-HT2A receptors were trapped in early endosome antigen 1- and Rab11-positive sorting endosomes in cells overexpressing c-Cbl mutants lacking carboxyl termini. This inhibitory effect was associated with a relative decrease in association of c-Cbl truncation proteins with the 5-HT2AR, compared with that observed for the full-length c-Cbl fusion protein. Consistent with the delayed recycling, 5-HT2AR resensitization was greatly attenuated in the presence of c-Cbl mutants lacking carboxyl termini, as detected by changes in the cytosolic calcium. Taken together, these studies have led to the discovery that the C-terminal region of c-Cbl plays a crucial role in the temporal and spatial control of 5-HT2AR recycling.  相似文献   

3.
Many G protein-coupled receptors possess carboxyl-terminal motifs ideal for interaction with PDZ scaffold proteins, which can control receptor trafficking and signaling in a cell-specific manner. To gain a panoramic view of beta1-adrenergic receptor (beta AR) interactions with PDZ scaffolds, the beta1AR carboxyl terminus was screened against a newly developed proteomic array of PDZ domains. These screens confirmed beta1AR associations with several previously identified PDZ partners, such as PSD-95, MAGI-2, GIPC, and CAL. Moreover, two novel beta1AR-interacting proteins, SAP97 and MAGI-3, were also identified. The beta1AR carboxyl terminus was found to bind specifically to the first PDZ domain of MAGI-3, with the last four amino acids (E-S-K-V) of beta1AR being the key determinants of the interaction. Full-length beta1AR robustly associated with full-length MAGI-3 in cells, and this association was abolished by mutation of the beta1AR terminal valine residue to alanine (V477A), as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. MAGI-3 co-expression with beta1AR profoundly impaired beta1AR-mediated ERK1/2 activation but had no apparent effect on beta1AR-mediated cyclic AMP generation or agonist-promoted beta1AR internalization. These findings revealed that the interaction of MAGI-3 with beta1AR can selectively regulate specific aspects of receptor signaling. Moreover, the screens of the PDZ domain proteomic array provide a comprehensive view of beta1AR interactions with PDZ scaffolds, thereby shedding light on the molecular mechanisms by which beta1 AR signaling and trafficking can be regulated in a cell-specific manner.  相似文献   

4.
Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.  相似文献   

5.
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha2A adrenergic receptor (α2A-R) by the ubiquitous stress-inducible 70 kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α2A-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α2A-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α2A-R-catalyzed [35S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine1A receptor (5-HT1A-R). In heat-stressed CHO cells, the α2A-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α2A-R compared to the 5-HT1A-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.  相似文献   

6.
Inside cells, membrane proteins are localized at particular surface domains to perform their precise functions. Various kinds of PDZ domain proteins have been shown to play important roles in the intracellular trafficking and anchoring of membrane proteins. In this study, we show that delta2 glutamate receptor is interacting with S-SCAM/MAGI-2, a PDZ domain protein localized in the perinuclear region and postsynaptic sites of cerebellar Purkinje cells. The binding is regulated by PKC (protein kinase-C) mediated phosphorylation of the receptor with a unique repetitive structure in S-SCAM/MAGI-2. Co-expression of both proteins resulted in drastic changes of the receptor localization in COS7 cells. These results show a novel regulatory mechanism for the binding of PDZ domain proteins and suggest that the interaction between delta2 receptor and S-SCAM/MAGI-2 may be important for intracellular trafficking of the receptor.  相似文献   

7.
In view of the co-distribution of dopamine D2LR and 5-hydroxytryptamine 5-HT2A receptors (D2LR and 5-HT2AR, respectively) within inter alia regions of the dorsal and ventral striatum and their role as a target of antipsychotic drugs; in this study we assessed the potential existence of D2LR-5-HT2AR heteromers in living cells and the functional consequences of this interaction. Thus, by means of a proximity-based bioluminescence resonance energy transfer (BRET) approach we demonstrated that the D2LR and the 5-HT2AR form stable and specific heteromers when expressed in HEK293T mammalian cells. Furthermore, when the D2LR-5-HT2AR heteromeric signaling was analyzed we found that the 5-HT2AR-mediated phospholipase C (PLC) activation was synergistically enhanced by the concomitant activation of the D2LR as shown in a NFAT-luciferase reporter gene assay and a specific and significant rise of the intracellular calcium levels were observed when both receptors were simultaneously activated. Conversely, when the D2LR-mediated adenylyl cyclase (AC) inhibition was assayed we showed that costimulation of D2LR and 5-HT2AR within the heteromer led to inhibition of the D2LR functioning, thus suggesting the existence of a 5-HT2AR-mediated D2LR trans-inhibition phenomenon. Finally, a bioinformatics study reveals that the triplet amino acid homologies LLT (Leu-Leu-Thr) and AIS (Ala-Ile-Ser) in TM1 and TM3, respectively of the D2R-5-HT2AR may be involved in the receptor interface. Overall, the presence of the D2LR-5-HT2AR heteromer in discrete brain regions is postulated based on the existence of D2LR-5-HT2A receptor-receptor interactions in living cells and their codistribution inter alia in striatal regions. Possible novel therapeutic strategies for treatment of schizophrenia should be explored by targeting this heteromer.  相似文献   

8.
β-Arrestins are multifunctional adaptor proteins best know for their vital role in regulating G protein coupled receptor (GPCR) trafficking and signaling. β-arrestin2 recruitment and receptor internalization of corticotropin-releasing factor receptor 1 (CRFR1), a GPCR whose antagonists have been shown to demonstrate both anxiolytic- and antidepressant-like effects, have previously been shown to be modulated by PDZ proteins. Thus, a structural characterization of the interaction between β-arrestins and PDZ proteins can delineate potential mechanism of PDZ-dependent regulation of GPCR trafficking. Here, we find that the PDZ proteins PSD-95, MAGI1, and PDZK1 interact with β-arrestin2 in a PDZ domain-dependent manner. Further investigation of such interaction using mutational analyses revealed that mutating the alanine residue at 175 residue of β-arrestin2 to phenylalanine impairs interaction with PSD-95. Additionally, A175F mutant of β-arrestin2 shows decreased CRF-stimulated recruitment to CRFR1 and reduced receptor internalization. Thus, our findings show that the interaction between β-arrestins and PDZ proteins is key for CRFR1 trafficking and may be targeted to mitigate impaired CRFR1 signaling in mental and psychiatric disorders.  相似文献   

9.
The Coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell–cell adhesion, protein trafficking, and viral infection. The major isoform of CAR is selectively sorted to the basolateral membrane of polarized epithelial cells where it co-localizes with the cellular scaffolding protein membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1). Previously, we demonstrated CAR interacts with MAGI-1 through a PDZ–domain dependent interaction. Here, we show that the PDZ3 domain of MAGI-1 is exclusively responsible for the high affinity interaction between the seven exon isoform of CAR and MAGI-1 using yeast-two-hybrid analysis and confirming this interaction biochemically and in cellular lysates by in vitro pull down assay and co-immunoprecipitation. The high affinity interaction between the PDZ3 domain and CAR C-terminus was measured by fluorescence resonance energy transfer. Further, we investigated the biological relevance of this high affinity interaction between CAR and the PDZ3 domain of MAGI-1 and found that it does not alter CAR-mediated adenovirus infection. By contrast, interruption of this high affinity interaction altered the localization of MAGI-1 indicating that CAR is able to traffic MAGI-1 to cell junctions. These data deepen the molecular understanding of the interaction between CAR and MAGI-1 and indicate that although CAR plays a role in trafficking PDZ-based scaffolding proteins to cellular junctions, association with a high affinity intracellular binding partner does not significantly alter adenovirus binding and entry via CAR.  相似文献   

10.
Understanding serotonergic (5-HT) signaling is critical for understanding human physiology, behavior, and neuropsychiatric disease. 5-HT mediates its actions via ionotropic and metabotropic 5-HT receptors. The 5-HT1A receptor is a metabotropic G protein-coupled receptor linked to the Gi/o signaling pathway and has been specifically implicated in the pathogenesis of depression and anxiety. To understand and precisely control 5-HT1A signaling, we created a light-activated G protein-coupled receptor that targets into 5-HT1A receptor domains and substitutes for endogenous 5-HT1A receptors. To induce 5-HT1A-like targeting, vertebrate rhodopsin was tagged with the C-terminal domain (CT) of 5-HT1A (Rh-CT5-HT1A). Rh-CT5-HT1A activates G protein-coupled inward rectifying K+ channels in response to light and causes membrane hyperpolarization in hippocampal neurons, similar to the agonist-induced responses of the 5-HT1A receptor. The intracellular distribution of Rh-CT5-HT1A resembles that of the 5-HT1A receptor; Rh-CT5-HT1A localizes to somatodendritic sites and is efficiently trafficked to distal dendritic processes. Additionally, neuronal expression of Rh-CT5-HT1A, but not Rh, decreases 5-HT1A agonist sensitivity, suggesting that Rh-CT5-HT1A and 5-HT1A receptors compete to interact with the same trafficking machinery. Finally, Rh-CT5-HT1A is able to rescue 5-HT1A signaling of 5-HT1A KO mice in cultured neurons and in slices of the dorsal raphe showing that Rh-CT5-HT1A is able to functionally compensate for native 5-HT1A. Thus, as an optogenetic tool, Rh-CT5-HT1A has the potential to directly correlate in vivo 5-HT1A signaling with 5-HT neuron activity and behavior in both normal animals and animal models of neuropsychiatric disease.  相似文献   

11.
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin1A (5-HT1A) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT1AR-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of ∼0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin1A receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.  相似文献   

12.
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.  相似文献   

13.
Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor in the mouse frontal cortex. Substitution of these residues (Ala-6774.40, Ala-6814.44, and Ala-6854.48) leads to absence of 5-HT2A·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT2A agonists. Furthermore, the ligand binding interaction between the components of the 5-HT2A·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer.  相似文献   

14.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Serotonin (5-hydroxytryptamine, 5-HT) is, without doubt, the neurotransmitter for which the number of receptors is the highest. Fifteen genes encoding functional 5-HT receptors have been cloned in mammalian brain. 5-HT3 receptors are ionotropic receptors, whereas all the others are metabotropic G-protein-coupled receptors (GPCRs). 5-HT receptor diversity is further increased by post-genomic modifications, such as alternative splicing (up to 10 splice variants for the 5-HT4 receptor) or by mRNA editing in the case of 5-HT2C receptors. The cellular and behavioral implications of 5-HT2C receptor editing are of great physiological importance. Signaling of 5-HT receptors involves a great variety of pathways, but only some of these have been demonstrated in neurons. The classical view of neurotransmitter receptors localized within the synaptic cleft cannot be applied to 5-HT receptors, which are mostly (but not exclusively) localized at extra-synaptic locations either pre- or post-synaptically. 5-HT receptors are engaged in pre- or post-synaptic complexes composed of many GPCR-interacting proteins. The functions of these proteins are starting to be revealed. These proteins have been implicated in targeting, trafficking to or from the membrane, desensitization, and fine-tuning of signaling.  相似文献   

16.
The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor.  相似文献   

17.
The serotonin (5-hydroxytryptamine; 5-HT)2C receptor is a G protein-coupled receptor (GPCR) exclusively expressed in CNS that has been implicated in numerous brain disorders, including anxio-depressive states. Like many GPCRs, 5-HT2C receptors physically interact with a variety of intracellular proteins in addition to G proteins. Here, we show that calmodulin (CaM) binds to a prototypic Ca2+-dependent “1-10” CaM-binding motif located in the proximal region of the 5-HT2C receptor C-terminus upon receptor activation by 5-HT. Mutation of this motif inhibited both β-arrestin recruitment by 5-HT2C receptor and receptor-operated extracellular signal-regulated kinase (ERK) 1,2 signaling in human embryonic kidney-293 cells, which was independent of G proteins and dependent on β-arrestins. A similar inhibition was observed in cells expressing a dominant-negative CaM or depleted of CaM by RNA interference. Expression of the CaM mutant also prevented receptor-mediated ERK1,2 phosphorylation in cultured cortical neurons and choroid plexus epithelial cells that endogenously express 5-HT2C receptors. Collectively, these findings demonstrate that physical interaction of CaM with recombinant and native 5-HT2C receptors is critical for G protein-independent, arrestin-dependent receptor signaling. This signaling pathway might be involved in neurogenesis induced by chronic treatment with 5-HT2C receptor agonists and their antidepressant-like activity.  相似文献   

18.
G protein-coupled receptors (GPCRs) are part of multi-protein networks called ‘receptosomes’. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.  相似文献   

19.
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.  相似文献   

20.
Here we report the design and synthesis of spiro[pyrrolidine-3,3′-oxindole] derivatives representing a novel scaffold of 5-HT7 receptor ligands. The synthesized analogues were validated as low nanomolar ligands showing selectivity in a panel of related serotonin receptor subtypes including 5-HT1AR, 5-HT2AR and 5-HT6R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号