首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The epidermal growth factor receptor (EGFR) and gp185erbB-2 are closely related tyrosine kinases. Despite extensive sequence and structural homology, these two receptors display quantitative and qualitative differences in their ability to couple with mitogenic signalling pathways. By using chimeric molecules between EGFR and erbB-2, we found that the determinants responsible for the specificity of mitogenic signal transduction are located in the amino-terminal half of the tyrosine kinase domain of either receptor. In the EGFR, mutational analysis within this subdomain revealed that deletion of residues 660 to 667 impaired receptor mitogenic activity without affecting its tyrosine kinase properties. This sequence is therefore likely to contribute to the specificity of substrate recognition by the EGFR kinase.  相似文献   

2.
When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.  相似文献   

3.
Murine norovirus (MNV), a prevalent pathogen of laboratory mice, shares many characteristics with human noroviruses. Previous results indicated that passage of MNV1 in the macrophage cell line RAW 264.7 results in attenuation in STAT1-deficient mice (C. E. Wobus, S. M. Karst, L. B. Thackray, K. O. Chang, S. V. Sosnovtsev, G. Belliot, A. Krug, J. M. Mackenzie, K. Y. Green, and H. W. Virgin, PLoS. Biol. 2:e432, 2004). Sequence analysis revealed two amino acid differences between the virulent and attenuated viruses. Using an infectious cDNA clone of the attenuated virus, we demonstrated that a glutamate-to-lysine substitution at position 296 in the capsid protein (VP1) is sufficient to restore virulence in vivo, identifying, for the first time, a virus-encoded molecular determinant of norovirus virulence.  相似文献   

4.
The epidermal growth factor (EGF) and erbB-2 receptors are structurally related membrane-bound tyrosine kinases. While these proteins exhibit close sequence homology, 50% overall and 80% in the tyrosine kinase domains, they respond very differently to heat stress. In NIH-3T3 or NR6 cells transfected with wild-type EGF-R and incubated at 37°C or heat shocked at 46°C, EGF binds to its receptor and stimulates receptor autophosphorylation to equivalent extents. At 46°C, however, the basal tyrosine kinase activity of the wild-type erbB-2 receptor is rapidly lost. When cells containing chimeric receptors composed of the EGF-R extracellular domain and intracellular domain of erbB-2 were heat stressed, 125I-EGF bound to the receptors, but did not stimulate receptor autophosphorylation. The decline in EGF-stimulated chimeric erbB-2 receptor autophosphorylation is dependent on the length of heat shock, with nearly 100% of the kinase activity lost after 60 min at 46°C. The loss of chimeric receptor erbB-2 kinase activity is not due to degradation of receptor protein, nor is it attributable to a specific transmembrane domain from either the EGF or erbB-2 receptors. Sensitivity of erbB-2 to heat stress is also not a result of denaturation of this receptor's carboxy-terminal domain. Insertion of the erbB-2 tyrosine kinase domain into the EGF-R confers heat stress sensitivity to the resultant chimeric receptor. Thus, although the EGF-R and erbB-2 kinase domains show a high degree of homology, the secondary/tertiary structures of these domains would seem to be stabilized in distinct manners. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Knockdown of growth factor receptor binding protein 2 (Grb2) by RNA interference strongly inhibits clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR). To gain insights into the function of Grb2 in EGFR endocytosis, we have generated cell lines in which endogenous Grb2 was replaced by yellow fluorescent protein (YFP)-tagged Grb2 expressed at the physiological level. In these cells, Grb2-YFP fully reversed the inhibitory effect of Grb2 knockdown on EGFR endocytosis and, moreover, trafficked together with EGFR during endocytosis. Overexpression of Grb2-binding protein c-Cbl did not restore endocytosis in Grb2-depleted cells. However, EGFR endocytosis was rescued in Grb2-depleted cells by chimeric proteins consisting of the Src homology (SH) 2 domain of Grb2 fused to c-Cbl. The "knockdown and rescue" analysis revealed that the expression of Cbl-Grb2/SH2 fusions containing RING finger domain of Cbl restores normal ubiquitylation and internalization of the EGFR in the absence of Grb2, consistent with the important role of the RING domain in EGFR endocytosis. In contrast, the carboxy-terminal domain of Cbl, when attached to Grb2 SH2 domain, had 4 times smaller endocytosis-rescue effect compared with the RING-containing chimeras. Together, the data suggest that the interaction of Cbl carboxy terminus with CIN85 has a minor and a redundant role in EGFR internalization. We concluded that Grb2-mediated recruitment of the functional RING domain of Cbl to the EGFR is essential and sufficient to support receptor endocytosis.  相似文献   

6.
The epidermal growth factor (EGF) receptor is phosphorylated by protein kinase C at Thr654. It has been proposed that the phosphorylation of this site is an important regulatory mechanism for the control of EGF receptor function. However, the physiological significance of the phosphorylation of EGF receptor Thr654 in intact cells is not understood. To address this question, the design of an experimental strategy is required that can be used to distinguish between the pleiotropic effects of kinase C activation and the specific effects of kinase C that are mediated by the phosphorylation of the EGF receptor at Thr654. The approach that we used was to examine the function of EGF receptors that are constitutively phosphorylated at residue 654. It was observed that the constitutive phosphorylation of the EGF receptor blocked mitogenic signal transduction by the receptor. These data are consistent with the hypothesis that the phosphorylation of the EGF receptor at residue 654 in intact cells inhibits EGF-stimulated cellular proliferation.  相似文献   

7.
The mammalian proto-oncoprotein Cbl and its homologues in Caenorhabditis elegans and Drosophila are evolutionarily conserved negative regulators of the epidermal growth factor receptor (EGF-R). Overexpression of wild-type Cbl enhances down-regulation of activated EGF-R from the cell surface. We report that the Cbl tyrosine kinase-binding (TKB) domain is essential for this activity. Whereas wild-type Cbl enhanced ligand-dependent EGF-R ubiquitination, down-regulation from the cell surface, accumulation in intracellular vesicles, and degradation, a Cbl TKB domain-inactivated mutant (G306E) did not. Furthermore, the transforming truncation mutant Cbl-N (residues 1-357), comprising only the Cbl TKB domain, functioned as a dominant negative protein. It colocalized with EGF-R in intracellular vesicular structures, yet it suppressed down-regulation of EGF-R from the surface of cells expressing endogenous wild-type Cbl. Therefore, Cbl-mediated down-regulation of EGF-R requires the integrity of both the N-terminal TKB domain and additional C-terminal sequences. A Cbl truncation mutant comprising amino acids 1-440 functioned like wild-type Cbl in down-regulation assays. This mutant includes the evolutionarily conserved TKB and RING finger domains but lacks the less conserved C-terminal sequences. We conclude that the evolutionarily conserved N terminus of Cbl is sufficient to effect enhancement of EGF-R ubiquitination and down-regulation from the cell surface.  相似文献   

8.
C3H10T1/2 murine fibroblasts overexpressing chicken pp60c-src showed a two- to fivefold enhanced incorporation of [3H]thymidine into DNA in response to epidermal growth factor (EGF) relative to that of the parent line. No difference in growth characteristics, number and affinity of EGF receptors, or hormone potency was attributable to c-src overexpression. These results suggest that pp60c-src may interact with the mitogenic signal transduction pathway of EGF in some event distal to hormone binding.  相似文献   

9.
10.
The two prohibitin proteins, Phb1p and Phb2p(BAP37), have been ascribed various functions, including cell cycle regulation, apoptosis, assembly of mitochondrial respiratory chain enzymes, and aging. We show that the mammalian prohibitins are present in the inner mitochondrial membrane and are always bound to each other, with no free protein detectable. They are coexpressed during development and in adult mammalian tissues, and expression levels are indicative of a role in mitochondrial metabolism, but are not compatible with roles in the regulation of cellular proliferation or apoptosis. High level expression of the proteins is consistently seen in primary human tumors, while cellular senescence of human and chick fibroblasts is accompanied by heterogeneous decreases in both proteins. The two proteins are induced by metabolic stress caused by an imbalance in the synthesis of mitochondrial- and nuclear-encoded mitochondrial proteins, but do not respond to oxidative stress, heat shock, or other cellular stresses. The gene promoter sequences contain binding sites for the Myc oncoprotein and overexpression of Myc induces expression of the prohibitins. The data support conserved roles for the prohibitins in regulating mitochondrial respiratory activity and in aging.  相似文献   

11.
Two percent dimethyl sulfoxide (DMSO) reversibly inhibited DNA synthesis in primary rat hepatocyte cultures maintained with epidermal growth factor (EGF) or hepatocyte growth factor (HGF). These data suggest that, in vitro, DMSO is a non-specific inhibitor of hepatocyte proliferation, regardless of the stimulating mitogen. In addition, removal of DMSO from mitogen-free cultures resulted in an increase in DNA synthesis. Protein synthesis gradually but irreversibly declined in all cultures after DMSO removal. The relevance of these findings to regulation of hepatocyte growth is discussed.  相似文献   

12.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

13.
We have used retrovirus-mediated gene transfer to introduce sequences encoding a 10,400-molecular-weight (10.4K) adenovirus protein previously shown to down regulate the receptor for epidermal growth factor (EGF) into two murine cell lines that possess human EGF receptors (EGF-Rs). Assays for receptor expression showed that acute infection resulted in rapid, constitutive down regulation of the EGF-R via a pathway that appears to be endosome mediated. This represents the first demonstration that 10.4K expression in the absence of other virus-encoded proteins is sufficient to elicit this response. The usefulness of this approach for the study of 10.4K-mediated signal transduction in cells with a nontransformed phenotype is discussed.  相似文献   

14.
15.
R? cells are 3T3-like cells derived from mouse embryos in which the insulin-like growth factor I (IGF-I) receptor (IGF-IR) genes have been disrupted by targeted homologous recombination. These cells cannot grow in serum-free medium supplemented by the growth factors that sustain the growth of other 3T3 cell lines, and cannot be transformed by oncogenes that easily transform wild type mouse embryo cells. We have used these cells to study the role of the IGF-IR in the growth and transformation of cells overexpressing the platelet-derived growth factor (PDGF)-b?b? receptor. We report that an overexpressed PDGF-b?b? receptor fails to induce mitogenesis or transformation in cells lacking the IGF-IR, while capable of doing so in cells expressing the IGF-IR. We conclude that the ability of the activated PDGF-b?b? receptor to stimulate cell proliferation and transformation requires a funcitional IGF-IR. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Solubilized epidermal growth factor receptor (EGF-R) has been used in an extension of the Geysen epitope mapping protocol in order to provide additional insight into the amino acid residues in human transforming growth factor alpha (hTGF alpha) which are critical to recognition and binding. Overlapping heptapeptides which encompassed the 50 amino acid primary sequence of hTGF alpha were synthesized on a polyethylene solid phase, and the amount of detergent-solubilized EGF-R bound to each peptide was measured using ELISA. EGF-R appeared to bind reproducibly to four heptapeptides cognate to sequences in both the N- and C-domains of hTGF alpha (residues 22-28, 28-34, 36-42, and 44-50). Visualization of these four regions on three-dimensional solution phase structures of hTGF alpha, derived from 1H NMR measurements [Kline, T.-P., Brown, F.K., Brown, S.C., Jeffs, P.W., Kopple, K.D., & Mueller, L. (1990) Biochemistry 29, 7805-7813], indicated that the peptide segments are located on a single face of the protein and suggested the presence of a potential receptor binding cavity. If peptide segments within both the N- and C-domains of hTGF alpha are involved in binding to EGF-R, then this has direct consequences for possible molecular mechanisms by which receptor activation might take place. For example, the observed conformational flexibility in the six NMR-derived hTGF alpha structures due to variations in the main-chain torsion angles of Val-33, in combination with the involvement of residues from both domains in the proposed binding cavity, may imply that receptor activation results from interdomain reorientation in the protein ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The family of G-protein-linked receptors includes many important pharmacological targets, of which the beta-adrenergic receptor is one of the best characterized. A better understanding of those factors that determine whether a ligand functions as an antagonist or as an agonist would facilitate the development of pharmaceutical agents that act at these receptors. Site-directed mutagenesis of the hamster beta 2-adrenergic receptor has implicated the conserved Asp113 residue in the third hydrophobic domain of the receptor in the interaction with cationic amine agonists and antagonists (Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., and Dixon, R. A. F. (1988) J. Biol. Chem, 263, 10267-10271). We now report that substitution of Asp113 with a glutamic acid residue results in a mutant beta-adrenergic receptor which recognizes several known beta-adrenergic antagonists as partial agonists. This partial agonist activity requires the presence of a carboxylate side chain on the amino acid residue at position 113 and is not observed when an asparagine residue is substituted at this position. These observations support the existence of overlapping binding sites for agonists and antagonists on the beta-adrenergic receptor and demonstrate that genetic engineering of receptors can complement structure-activity studies of ligands in defining the molecular interactions involved in receptor activation.  相似文献   

18.
Pseudomonas exotoxin A is composed of three structural domains that mediate cell recognition (I), membrane translocation (II), and ADP-ribosylation (III). Within the cell, the toxin is cleaved within domain II to produce a 37-kDa carboxyl-terminal fragment, containing amino acids 280-613, which is translocated to the cytosol and causes cell death. In this study, we constructed a mutant protein (PE37), composed of amino acids 280-613 of Pseudomonas exotoxin A, which does not require proteolysis to translocate. PE37 was targeted specifically to cells with epidermal growth factor receptors by inserting transforming growth factor-alpha (TGF-alpha) after amino acid 607 near the carboxyl terminus of Pseudomonas exotoxin A. PE37/TGF-alpha was very cytotoxic to cells with epidermal growth factor receptors. It was severalfold more cytotoxic than a derivative of full-length Pseudomonas exotoxin A containing TGF-alpha in the same position, probably because the latter requires intracellular proteolytic processing to exhibit its cytotoxicity, and proteolytic processing is not 100% efficient. Deletion of 2, 4, or 7 amino acids from the amino terminus of PE37/TGF-alpha greatly diminished cytotoxic activity, indicating the need for a proper amino-terminal sequence. In addition, a mutant containing an internal deletion of amino acids 314-380 was minimally active, indicating that other regions of domain II are also required for the cytotoxic activity of Pseudomonas exotoxin A.  相似文献   

19.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

20.
The insulin receptor is a ligand-activated tyrosine kinase composed of two alpha and two beta subunits. A single transmembrane domain composed of 23 hydrophobic residues is contained in each beta subunit. We examined the role of the transmembrane domain in regulating insulin receptor signaling by inserting a negatively charged amino acid (Asp) for Val938 (V938D). Chinese hamster ovary (CHO) cells were stably transfected with a plasmid containing both the neomycin-resistance gene and either the wild-type or the mutant (V938D) insulin receptor cDNA. Insulin binding increased similarly in CHO cells stably transfected with the wild-type and the V938D-mutant insulin receptor cDNA. Insulin stimulated glucose transport and cell growth in cells expressing the normal insulin receptor. By contrast, in the absence of insulin, glucose transport and cell growth in CHO-V938D cells were as high as in insulin-stimulated control cells and no longer responsive to insulin stimulation. Phosphorylation of the beta subunit of the insulin receptor was also increased in CHO-V938D cells not exposed to insulin. These results support an essential role of the transmembrane domain of the insulin receptor in the transduction of insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号