首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

2.
Summary Gastrin/cholecystokinin (gastrin/CCK)-like immunoreactivity has been detected in the brain, suboesophageal ganglion and corpora cardiaca of the larva of Aeschna cyanea by radioimmunoassay and immunohistochemistry, by use of two antisera raised against the sulfated (CCK-8S) and the unsulfated form (CCK-8NS) of the carboxyl terminal octapeptide. Numerous immunoreactive neurons were demonstrated in the protocerebrum (exclusive of optic lobes) and suboesophageal ganglion where 20 and 15 symmetrical clusters of reactive cells, respectively, were observed. Immunoreactive cells also occurred in the tritocerebrum, the optic lobes and the frontal ganglion. In the corpora cardiaca, gastrin/CCK-like material was found both within intrinsic cells and axon terminals. RIA measurements support the immunohistochemical results in so far as large amounts of gastrin/CCK-like material were detected in the brain, corpora cardiaca and suboesophageal ganglion complex. Both boiling water-acetic acid- and methanol-extraction procedures were performed. Comparisons of the results lead to the conclusion that a large part of the gastrin/CCK-like material occurs as small molecules. Immunohistochemical procedures performed on material fixed in a solution of picric acid-paraformaldehyde demonstrated differences in the immunoreactivity of the tested antisera. First, the immunohistochemical reaction was always more pronounced when the CCK-8NS antiserum was used instead of the CCK-8S antiserum, which may be interpreted by a lower affinity of the latter. In the second place, some neurons strongly stained by the CCK-8NS antiserum were only very faintly if at all stained by the CCK-8S antiserum, which may mean that different peptides or at least distinct forms of the same precursor are detected.  相似文献   

3.
Seidel C  Bicker G 《Tissue & cell》1996,28(6):663-672
The biogenic amine serotonin is a neurotransmitter and modulator in both vertebrates and invertebrates. In the CNS of insects, serotonin is expressed by identifiable subsets of neurons. In this paper, we characterize the onset of expression in the brain and suboesophageal ganglion of the honeybee during pupal development. Several identified serotonin-immunoreactive neurons are present in the three neuromeres of the suboesophageal ganglion the dorsal protocerebrum, and the deutocerebrum at pupal ecdysis. Further immunoreactive neurons are incorporated into the developing pupal brain in two characteristic developmental phases. During the first phase, 5 days after pupal ecdysis, serotonin immunoreactivity is formed in the protocerebral central body, the lamina and lobula, and the deutocerebral antennal lobe. During the second phase, 2 days later, immunoreactivity appears in neurons of the protocerebral noduli of the central complex, the medulla, and the pedunculi and lobes of the mushroom bodies. Three novel serotonin-immunoreactive neurons that innervate the central complex and the mushroom bodies can be individually identified.  相似文献   

4.
Summary We have used immunohistochemical methods to investigate the morphology of identified, presumptive serotonergic neurons in the antennal lobes and suboesophageal ganglion of the worker honeybee. A large interneuron (deutocerebral giant, DCG) is described that interconnects the deutocerebral antennal and dorsal lobes with the suboesophageal ganglion and descends into the ventral nerve chord. This neuron is accompanied by a second serotonin-immunoreactive interneuron with projections into the protocerebrum. Two pairs of bilateral immunoreactive serial homologues were identified in each of the three suboesophageal neuromeres and were also found in the thoracic ganglia. With the exception of the frontal commissure, no immunoreactive processes could be found in the peripheral nerves of the brain and the suboesophageal ganglion. The morphological studies on the serial homologues were extended by intracellular injections of Lucifer Yellow combined with immunofluorescence.  相似文献   

5.
Members of the neuropeptide family having Phe-X-Pro-Arg-Leu-NH(2) (FXPRLamide; X=Ser, Thr, Val, or Gly) at the C-terminus serve as regulators of oviduct and visceral muscle contraction, sex pheromone production, and diapause induction. Antibody raised against Bombyx mori diapause hormone recognized a variety of FXPRLamide peptides. Using this antibody, the antigen was immunocytochemically localized in the central nervous system (CNS) of the silkworm, Bombyx mori. Immunoreactive somata were observed in all ganglia of the CNS including the brain. Twelve somata localized at the midline of the suboesophageal ganglion (SG) were most intensely stained, and their neurite projections reached the retrocerebral complex. Thus, these cells in the SG exhibited typical features of neuroendocrine neurons. Marked reduction in immunoreactivity was observed in a pair of neurosecretory cells in the labial neuromere in SG of diapause type pupae, which indicates an active release of FXPRLamide peptides from these cells. No clear connection to neurohemal sites were observed in immunoreactive cells in the brain, thoracic or abdominal ganglia, suggesting that the immunoreactive peptides in these organs are likely to serve as neurotransmitters or neuromodulators.  相似文献   

6.
Locustamyotropin-like immunoreactivity was visualized in the nervous system of Locusta migratoria by means of the peroxidase antiperoxidase method. Highly specific antibodies to the carboxy-terminus of the locustamyotropins were obtained by elution through an affinity column to which Lom-MT II was covalently bound. Specific cells in the nervous system of Locusta migratoria contain substances immunoreactive to anti-locustamyotropin. In total, about 100 cells immunoreactive to the Lom-MT-II antiserum were detected in the head ganglia, in the abdominal neuromeres of the metathoracic ganglion, and in the five free abdominal ganglia. In the brain, immunoreactive cell groups were situated in the inner and outer edge of the tritocerebrum. Prominent axon bundles tightly surround the tractus I to the corpora cardiaca. The corpora allata were innervated by the nervus corporis allati I coming from the corpora cardiaca and by fibers in the nervus corporis allati II originating from cell bodies in the suboesophageal ganglion. Immunoreactive cell bodies in the suboesophageal and abdominal ganglia are distributed along the anterior posterior midline axis, both dorsally and ventrally. The processes of the cell bodies in the abdominal ganglia leave the ganglia and were traced in the respective median nerves into the neurohaemal organs. Since the Lom-MT-II antiserum cross-reacts with all peptides of the locustamyotropin family that have a carboxy-terminus in common, these cells may contain one or several locustamyotropins. The Lom-MT antiserum also recognizes pheromone biosynthesis activating neurohormone, as was revealed by the intensive labeling of suboesophageal cell bodies in Bombyx mori.  相似文献   

7.
Summary The central and visceral nervous systems of the cockroach Periplaneta americana were studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibody to bovine pancreatic polypeptide (PP). PP-like immunoreactive neuron somata are most numerous in the brain; at least 6 pairs of cell groups occur in clearly defined regions. Three pairs of cells each are also present in the suboesophageal ganglion and the thoracic ganglia, one pair of a single cell each in the first abdominal and the frontal ganglia, and 4 to 6 pairs of single cells in the terminal ganglion. No reactive cells were found in the retrocerebral complex and the second to the fifth abdominal ganglia. The axons containing PP-like immunoreactivity issue many branches that are distributed in the entire brain-retrocerebral complex, ventral cord, and visceral nervous system. PP-like immunoreactive material produced in the brain seems to be transported by three routes: protocerebrum to corpora cardiaca (-allata) through the nervi corporis cardiaci, tritocerebrum to visceral nervous system through frontal commissures, and to ventral cord through circumoesophageal connectives.A possible homology between the mammalian brain-GEP (gastro-enteropancreatic) system and the brain-midgut system of this insect is discussed.  相似文献   

8.
We previously demonstrated that tryptophan hydroxylase (TPH), the rate-limiting enzyme of serotonin (5-HT) synthesis, was commonly present in the brains of some insects. The current study was aimed at determining the number of serotonergic neurons in the brain and suboesophageal ganglion of adult Drosophila melanogaster and to investigate further the differences in immunoreactivity between 5-HT and TPH. Brain sections of Drosophila were immunostaind with sheep anti-TPH polyclonal antibody and rabbit anti-5-HT antiserum. The 5-HT-like immunoreactive neurons were also immunoreactive for TPH and bilaterally symmetrical; 83 neurons were found in each hemisphere of the brain and suboesophageal ganglion of adult Drosophila. This technique of colocalizing 5-HT and TPH revealed a larger number of serotonergic neurons in the brain and suboesophageal ganglion than that previous reported, thus updating our knowledge of the 5-HT neuronal system of Drosophila.  相似文献   

9.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

10.
An immunocytochemical technique with the use of three different antibodies raised against serotonin was applied to localize the immunoreactive neurons in the central nervous system of the crayfish, Pacifastacus leniusculus. Immunoreactive neurons were found in three optic ganglia (medulla externa, interna and terminalis). They appeared in three layers of the medulla externa and interna. The medulla terminalis displayed three prominent groups of immunoreactive perikarya and mainly marginal immunoreactive fibres. Immunoreactive areas of the brain comprised the protocerebral bridge, central body, paracentral lobes and two loci in the anterior portion of the protocerebrum, i.e., the terminal areas for immunoreactive fibres from the optic centres. The olfactory lobes showed a specific immunoreactive pattern. In addition, diffusely and sparsely distributed immunoreactive fibres were found throughout the brain. The immunoreactive neurons are largely localized in the same areas of the central nervous system as the catecholaminergic neurons although some distinct differences occur.  相似文献   

11.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

12.
Summary Evidence of dopamine cells in the brain and the suboesophageal ganglion of the silkworm Bombyx mori was obtained immunohistologically in larvae and pupae. From six to eight and eight (two symmetrical groups of four) immunoreactive cells are present respectively in median and lateral protocerebral areas of the brain. In the suboesophageal ganglion, two cell clusters with dopamine immunoreactivity were observed. There was no clear difference in the nature of the immunohistochemical reaction and the number of cells between diapause- and non-diapause-egg producers, in both brains and suboesophageal ganglia. By examination of adjacent sections, it was possible to show that dopamine-immunoreactive cells in larval suboesophageal ganglia also contain an endorphin-like substance.  相似文献   

13.
The γ‐aminobutyric acid (GABA) has long been considered as an inhibitory neurotransmitter in the central nervous system (CNS) of both vertebrates and arthropods. Since the glutamic acid decarboxylase (GAD) has a restricted tissue distribution and catalyzes the conversion of L‐glutamate to GABA, immunoreactivity of GAD isoforms can reveal distribution of GABAergic neurons in the CNS. In the CNS of the spider Araneus cavaticus, immunoreactivity of GAD isoforms can be detected in the optic lobes including neurons and neuropiles of the supraesophageal ganglia. Strong GAD‐like immunoreactive cell bodies are concentrated in two bilaterally symmetric cell clusters of the protocerebrum. Some intrinsic cell bodies near the central body also show strong immunoreactivity. However, the intrinsic nerve masses and some of the longitudinal and transverse tracts within the supraesophageal ganglion are only lightly labelled, and the fibers transverse the hemisphere and the central fibrous masses are not labelled. Among the three basic types of cell bodies surrounding the central body, several clusters of the Type‐C cells show strong GAD‐like immunoreactivity, however both of the Type‐A and Type‐B cells are not labelled at all.  相似文献   

14.
A highly specific polyclonal antiserum has been raised against periviscerokinin, the first neuropeptide isolated from the perisympathetic organs of insects (Predel et al. 1995). In this study, two different neuronal systems with periviscerokinin-like immunoreactivity were distinguished in the central nervous system of the American cockroach: (1) An intrinsic neuronal network, restricted to the head-thoracic region, was formed by intersegmental projecting neurons of the brain, suboesophageal ganglion and metathoracic ganglion. In addition, groups of local interneurons occurred in the proto- and tritocerebrum. (2) A typical neurohormonal system was stained exclusively in the abdomen; it was represented by abdominal perisympathetic organs which were supplied by three cell clusters located in each unfused abdominal ganglion. As revealed by nickel backfills, most neurons with axons entering the perisympathetic organs contained a periviscerokinin-like peptide. Immunoreactive fibres left the perisympathetic organs peripherally, innervated the hyperneural muscle and ran via the link nerves/segmental nerves to the heart and segmental vessels. All visceral muscles innervated by periviscerokinin-immunoreactive fibres were shown to be sensitive to periviscerokinin, whereas the hindgut gave no specific response to this peptide.  相似文献   

15.
Induction of egg diapause in the silkworm, Bombyx mori by some cephalo-thoracic organs of the cockroach, Periplaneta americana was examined. All tissues tested such as brain, corpora cardiaca, corpora allata, suboesophageal and thoracic ganglia and nerve cords between thoracic ganglia were able to produce diapause eggs in non-diapause egg producers both by transplantation and injection of their crude homogenates. The homogenate of thoracic ganglia was effective even in pharate adults with the suboesophageal ganglion removed or in isolated abdomens of pharate adults.From these results, it was surmised that some endocrine organs, as well as the central nervous system in the cephalo-thorax of Periplaneta americana, contained the active principle responsible for egg diapause in Bombyx mori.  相似文献   

16.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

17.
Antisera raised to the cardioactive peptide corazonin were used to localize immunoreactive cells in the nervous system of the American cockroach. Sera obtained after the seventh booster injection were sufficiently specific to be used for immunocytology. They recognized a subset of 10 lateral neurosecretory cells in the protocerebrum that project to, and arborize and terminate in the ipsilateral corpus cardiacum. They also reacted with bilateral neurons in each of the thoracic and abdominal neuromeres, a single dorsal unpaired median neuron in the suboesophageal ganglion, an interneuron in each optic lobe, and other neurons at the base of the optic lobe, in the tritocerebrum and deutocerebrum. The presence of corazonin in the abdominal neurons and the lateral neurosecretory cells was confirmed by HPLC fractionation of extracts of the abdominal ganglia, brains and retrocerebral complexes, followed by determination of corazonin by ELISA, which revealed in each tissue a single immunoreactive peak co-eluting with corazonin in two different HPLC systems. Antisera obtained after the first three booster injections recognized a large number of neuroendocrine cells and neurons in the brain and the abdominal nerve cord. However, the sera from the two rabbits reacted largely with different cells, indicating that the majority of this immunoreactivity was due to cross-reactivity. These results indicate that the production of highly specific antisera to some neuropeptides may require a considerable number of booster injections.  相似文献   

18.
Summary The distributions of small cardioactive peptide (SCP)- and FMRFamide-like immunoreactivities in the central nervous system of the medicinal leech Hirudo medicinalis were studied. A subset of neurons in the segmental ganglia and brains was immunoreactive to an antibody directed against SCPB. Immunoreactive cell bodies were regionally distributed throughout the nerve cord, and occurred both as bilaterally paired and unpaired neurons. The majority of the unpaired cells displayed a tendency to alternate from side to side in adjacent ganglia. A small number of neurons were immunoreactive only in a minority of nerve cords investigated. Intracellular injections of Lucifer yellow dye and subsequent processing for immunocytochemistry revealed SCP-like immunoreactivity in heart modulatory neurons but not in heart motor neurons. FMRFamide-like immunoreactivity was also detected in cell bodies throughout the central nervous system. A subset of neurons contained both SCP- and FMRFamide-like immunoreactivities; others stained for only one or the other antigen. These data suggest that an antigen distinct from FMRFamide is responsible for at least part of the SCP-like immunoreactivity. This antigen likely bears some homology to the carboxyl terminal of SCPA and SCPB.  相似文献   

19.
SchistoFLRFamide (PDVDHVFLRF-NH2) is one of the major endogenous neuropeptides of the FMRF-amide family found in the nervous system of the locust,Schistocerca gregaria. To gain insights into the potential physiological roles of this neuropeptide we have examined the distribution of SchistoFLRFamide-like immunoreactivity in the ventral nervous system of adult locusts by use of a newly developed N-terminally specific antibody. SchistoFLRFamide-like immunoreactivity in the ventral nerve cord is found in a subgroup of the neurones that are immunoreactive to an antiserum raised against bovine pancreatic polypeptide (BPP). In the suboesophageal ganglion three groups of cells stain, including one pair of large posterior ventral cells. These cells are the same size, in the same location in the ganglion and have the same branching pattern as a pair of BPP immunoreactive cells known to innervate the heart and retrocerebral glandular complex of the locust. In the thoracic and abdominal ganglia two and three sets of cells, respectively, stain with both the SchistoFLRFamide and BPP antisera. In the abdominal ganglia the immunoreactive cells project via the median nerves to the intensely immunoreactive neurohaemal organs.  相似文献   

20.
Summary The distribution of gastrin/CCK-like immunoreactive material has been studied in the retrocerebral complex of Calliphora. The material reacts with antisera specific for the common COOH terminus of gastrin and CCK but not with N-terminal antisera. The three thoracic ganglia and the fused abdominal ganglia each contain a specific number of symmetrically arranged immunoreactive cells both dorsally and ventrally in pairs on either side of the midline in a sagittal plane. The neuropil of these ganglia also contains a considerable amount of immunoreactive fibres and droplets. Reconstructed axonal pathways suggest that some of the nerve fibres have their origins within the brain and/or the suboesophageal ganglion. Immunoreactive material may also be seen apparently leaving the thoracic ganglion posteriorly via the abdominal nerves, and there is strong evidence of a neurohaemal organ within the dorsal sheath in the region of the metathoracic and abdominal ganglia. There appears to be a direct correlation between the content of peptidergic material of cells and fibres and the age and diet of the flies. The corpus cardiacum contains COOH-terminal specific gastrin/CCK-like material within the intrinsic cells and in the neuropil. It is present also in the cardiac-recurrent nerve entering the corpus cardiacum anteriorly and in the nerves leaving the gland dorsoposteriorly, the aortic or cardiac nerves. It is not observed, however, in the nerves leaving the corpus cardiacum ventroposteriorly, the so-called oesophageal, gastric or crop-duct nerves. The corpus allatum and the hypocerebral ganglion do not contain immunoreactive material of this type. Gastrin/CCK-like and secretin-like immunoreactive materials appear to co-exist in the cells of the corpus cardiacum and co-existence of gastrin/CCK-like and pancreatic polypeptide like substances occurs within certain cells of the thoracic ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号