首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocytic stages of the malaria parasite Plasmodium falciparum rely on glycolysis for their energy supply and it is unclear whether they obtain energy via mitochondrial respiration albeit enzymes of the tricarboxylic acid (TCA) cycle appear to be expressed in these parasite stages. Isocitrate dehydrogenase (ICDH) is either an integral part of the mitochondrial TCA cycle or is involved in providing NADPH for reductive reactions in the cell. The gene encoding P. falciparum ICDH was cloned and analysis of the deduced amino-acid sequence revealed that it possesses a putative mitochondrial targeting sequence. The protein is very similar to NADP+-dependent mitochondrial counterparts of higher eukaryotes but not Escherichia coli. Expression of full-length ICDH generated recombinant protein exclusively expressed in inclusion bodies but the removal of 27 N-terminal amino acids yielded appreciable amounts of soluble ICDH consistent with the prediction that these residues confer targeting of the native protein to the parasites' mitochondrion. Recombinant ICDH forms homodimers of 90 kDa and its activity is dependent on the bivalent metal ions Mg2+ or Mn2+ with apparent Km values of 13 micro m and 22 micro m, respectively. Plasmodium ICDH requires NADP+ as cofactor and no activity with NAD+ was detectable; the for NADP+ was found to be 90 micro m and that of d-isocitrate was determined to be 40 micro m. Incubation of P. falciparum under exogenous oxidative stress resulted in an up-regulation of ICDH mRNA and protein levels indicating that the enzyme is involved in mitochondrial redox control rather than energy metabolism of the parasites.  相似文献   

2.
NADP+-dependent isocitrate dehydrogenases (ICDHs) are enzymes that reduce NADP+ to NADPH using isocitrate as electron donor. Cytosolic and mitochondrial isoforms of ICDH have been described. Little is known on the expression of ICDHs in brain cells. We have cloned the rat mitochondrial ICDH (mICDH) in order to obtain the sequence information necessary to study the expression of ICDHs in brain cells by RT-PCR. The cDNA sequence of rat mICDH was highly homologous to that of mICDH cDNAs from other species. By RT-PCR the presence of mRNAs for both the cytosolic and the mitochondrial ICDHs was demonstrated for cultured rat neurons, astrocytes, oligodendrocytes and microglia. The expression of both ICDH isoenzymes was confirmed by western blot analysis using ICDH-isoenzyme specific antibodies as well as by determination of ICDH activities in cytosolic and mitochondrial fractions of the neural cell cultures. In astroglial and microglial cultures, the total ICDH activity was almost equally distributed between cytosolic and mitochondrial fractions. In contrast, in cultures of neurons and oligodendrocytes about 75% of total ICDH activity was present in the cytosolic fractions. Putative functions of ICDHs in cytosol and mitochondria of brain cells are discussed.  相似文献   

3.
NADP-dependent isocitrate dehydrogenase (ICDH) from the bacterium Paracoccus denitrificans was purified to homogeneity. The purification procedure involved ammonium sulphate fractionation, ion exchange chromatography, and gel permeation chromatography. The specific activity of purified ICDH was 801 nkat/mg, the yield of the enzyme 58%. The purity of the enzyme was checked by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. ICDH is a dimer composed of two probably identical subunits of relative molecular weight 90,000. The pH optimum of the enzyme reaction in the direction of substrate oxidation was found to be 5.6; the presence of Mn2+ is essential for enzyme activity. The absorption and fluorescence spectra of the homogeneous enzyme were measured as well.  相似文献   

4.
In order to investigate the genetic diversity of iron-containing superoxide dismutase (FeSOD) from Plasmodium falciparum, a potential anti-malarial therapeutic target, we cloned and sequenced Plasmodium FeSOD from 26 blood samples from non-infected patients. Fifteen clones had the same nucleotide sequence as that of the FeSOD gene of the P. falciparum strain HB3 cultivated in vitro. The other 11 clones presented mutations responsible for punctual amino acid changes which did not modify key residues for the function or the structure of the enzyme. The high sequence conservation between FeSOD from the isolates confirms that this enzyme could represent a therapeutic target.  相似文献   

5.
Plasmodium falciparum glucose 6-phosphate dehydrogenase (Pf Glc6PD), compared to other Glc6PDs has an additional 300 amino acids at the N-terminus. They are not related to Glc6PD but are similar to a family of proteins (devb) of unknown function, some of which are encoded next to Glc6PD in certain bacteria. The human devb homologue has recently been shown to have 6-phosphogluconolactonase (6PGL) activity. This suggests Pf Glc6PD may be a bifunctional enzyme, the evolution of which has involved the fusion of adjacent genes. Further functional analysis of Pf Glc6PD has been hampered because parts of the gene could not be cloned. We have isolated and sequenced the corresponding Plasmodium berghei gene and shown it encodes an enzyme (Pb Glc6PD) with the same structure as the P. falciparum enzyme. Pb Glc6PD is 950 amino acids long with significant sequence similarity in both the devb and Glc6PD domains with the P. falciparum enzyme. The P. berghei enzyme does not have an asparagine-rich segment between the N and C halves and it contains an insertion at the same point in the Glc6PD region as the P. falciparum enzyme but the insertion in the P. berghei is longer (110 versus 62 amino acids) and unrelated in sequence to the P. falciparum insertion. Though expression of this enzyme in bacteria produced largely insoluble protein, conditions were found where the full-length enzyme was produced in a soluble form which was purified via a histidine tag. We show that this enzyme has both Glc6PD and 6PGL activities. Thus the first two steps of the pentose phosphate pathway are catalysed by a single novel bifunctional enzyme in these parasites.  相似文献   

6.
Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (F v/F m), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism.  相似文献   

7.
In this study, we report cDNA sequences of the cytosolic NADP-dependent isocitrate dehydrogenase for humans, mice, and two species of voles (Microtus mexicanus and Microtus ochrogaster). Inferred amino acid sequences from these taxa display a high level of amino acid sequence conservation, comparable to that of myosin beta heavy chain, and share known structural features. A Caenorhabditis elegans enzyme that was previously identified as a protein similar to isocitrate dehydrogenase is most likely the NADP-dependent cytosolic isocitrate dehydrogenase enzyme equivalent, based on amino acid similarity to mammalian enzymes and phylogenetic analysis. We also suggest that NADP-dependent isocitrate dehydrogenases characterized from alfalfa, soybean, and eucalyptus are most likely cytosolic enzymes. The phylogenetic tree of various isocitrate dehydrogenases from eukaryotic sources revealed that independent gene duplications may have given rise to the cytosolic and mitochondrial forms of NADP-dependent isocitrate dehydrogenase in animals and fungi. There appears to be no statistical support for a hypothesis that the mitochondrial and cytosolic forms of the enzyme are orthologous in these groups. A possible scenario of the evolution of NADP-dependent isocitrate dehydrogenases is proposed.   相似文献   

8.
9.
A gene encoding NADP-dependent Ds-threo-isocitrate dehydrogenase was isolated from Haloferax volcanii genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. Analysis of the nucleotide sequence revealed an open reading frame of 1260 bp encoding a protein of 419 amino acids with 45837 Da molecular mass. This sequence is highly similar to previously sequenced isocitrate dehydrogenases. In the alignment of the amino acid sequences with those from several archaeal and mesophilic NADP-dependent isocitrate dehydrogenases, the residues involved in dinucleotide binding and isocitrate binding are well conserved. We have developed methods for the expression in Escherichia coli and purification of the enzyme from H. volcanii. This expression was carried out in E. coli as inclusion bodies using the cytoplasmic expression vector pET3a. The enzyme was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing EDTA, MgCl(2) and 3 M NaCl. Maximal activity was obtained after several hours incubation at room temperature.  相似文献   

10.
Haloferax volcanii Ds-threo-isocitrate dehydrogenase (ICDH) was highly expressed in bacteria as inclusion bodies. The recombinant enzyme was refolded, purified and characterized, and was found to be NADP-dependent like the wild-type protein. Sequence alignment of several isocitrate dehydrogenases from evolutionarily divergent organisms including H. volcanii revealed that the amino acid residues involved in coenzyme specificity are highly conserved. Our objective was to switch the coenzyme specificity of halophilic ICDH by altering these conserved amino acids. We were able to switch coenzyme specificity from NADP+ to NAD+ by changing five amino acids by site-directed mutagenesis (Arg291, Lys343, Tyr344, Val350 and Tyr390). The five mutants of ICDH were overexpressed in Escherichia coli as inclusion bodies and each recombinant ICDH protein was refolded and purified, and its kinetic parameters were determined. Coenzyme specificity did not switch until all five amino acids were substituted.  相似文献   

11.
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 microM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

12.
The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.  相似文献   

13.
Metal chelating agent EDTA inhibits the activity of mung-bean NADP+-linked isocitrate dehydrogenase (ICDH) in a competitive manner. The activity of the Apo-enzyme was restored by divalent metal ions with the order of effectiveness found to be Mn 2+> Mg2+ > Zn2+ > Co2+ > Cu2+. here appeared to be a single type of metal binding site that was saturated either with 0.5 mM of Mn2+ or with 2.5 mM of Mg2+. ADP, ATP and NADPH inhibit the enzyme in competitive manner. On titration with 5, 5’-dithiobis (2-nitrobenzoate), i.e. DTNB, the mung bean isocitrate dehydrogenase showed 4.0 reactive -SH groups per molecule. The denatured ICDH enzyme of mung bean possess 8.1-SH groups per molecule. The blocking of this group with -SH reagents, lead to the inactivation of mung bean ICDH enzyme. Time-dependent inactivation of ICDH with iodoacetamide and Nethylmaleimide (NEM) revealed decay in the activity in a single exponential manner.  相似文献   

14.
NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.  相似文献   

15.
16.
Plasmodiumfalciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the alpha < class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the alpha-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having alpha-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

17.
Temperature-Sensitive Nonsense Suppressors in Yeast   总被引:21,自引:4,他引:17       下载免费PDF全文
We have measured gene function in normal and male-like intersexual triploids of Drosophila melanogaster by assaying crude extracts of whole flies or thoraces for levels of an X-linked (6-phosphogluconate dehydrogenase) and an autosomal (NADP-dependent isocitrate dehydrogenase) enzyme activity. Our observations lead us to conclude that each dose of the X-linked gene is more active in the cells of these intersexes than it is in normal triploid or diploid female cells. These results indicate that a level of activity intermediate between the normal male and female levels is possible for X-linked genes.  相似文献   

18.
The malaria parasite, Plasmodium falciparum, unlike its human host, utilizes type II fatty acid synthesis, in which steps of fatty acid biosynthesis are catalyzed by independent enzymes. Due to this difference, the enzymes of this pathway are a potential target of newer antimalarials. Here we report the functional characterization of Plasmodium FabG expressed in Escherichia coli. The purified recombinant FabG from P. falciparum is soluble and active. The K(m) of the enzyme for acetoacetyl-CoA was estimated to be 75 microM with a V(max) of 0.0054 micromol/min/ml and a k(cat) value of 0.014s(-1). NADPH exhibited negative cooperativity for its interaction with FabG. We have also modeled P. falciparum FabG using Brassica napus FabG as the template. This model provides a structural rationale for the specificity of FabG towards its cofactor, NADPH.  相似文献   

19.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

20.
The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical cell fractionation studies that this enzyme is a typical constituent of peroxisomes. As a consequence, the beta-oxidation of mono- and polyunsaturated fatty acids with double bonds at even positions requires stoichiometric amounts of intraperoxisomal NADPH. We suggest that NADP-dependent isocitrate dehydrogenase isoenzymes function in an NADP redox shuttle across the peroxisomal membrane to keep intraperoxisomal NADP reduced. This is based on the finding of a third NADP-dependent isocitrate dehydrogenase isoenzyme, Idp3p, next to the already known mitochondrial and cytosolic isoenzymes, which turned out to be present in the peroxisomal matrix. Our proposal is strongly supported by the observation that peroxisomal Idp3p is essential for growth on the unsaturated fatty acids arachidonic, linoleic and petroselinic acid, which require 2, 4-dienoyl-CoA reductase activity. On the other hand, growth on oleate which does not require 2,4-dienoyl-CoA reductase, and NADPH is completely normal in Deltaidp3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号