首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After approximately 10 wk of exposure to decreasing day lengths, Siberian hamsters (Phodopus sungorus) begin to display spontaneous torpor bouts several times each week. Torpor is associated with reduced daily energy expenditure and lower food consumption and ameliorates the thermoregulatory challenges of winter. We tested the extent to which the energy savings conferred by daily torpor depend on the presence of an insulative pelage. Female hamsters were housed in a winter day length (8L:16D) at 5 degrees C; daily food intake and torpor characteristics were recorded for 5 wk in shaved (furless) or normal hamsters. Torpor-bout incidence decreased by 62% in furless hamsters, but the duration of individual bouts and the minimum body temperature attained during torpor were unaffected by loss of pelage. Body temperature declined more rapidly during entry into torpor and increased more slowly during arousal from torpor in furless than in control hamsters. Energy savings per torpor bout, assessed by the amount of food consumed on days that included a torpor bout, was substantially greater in normal than in furless hamsters (16.0% vs. 3.3%); this difference likely reflects the increased cost of thermoregulation during torpor, as well as the increased caloric expenditure incurred by furless hamsters during arousal from torpor. An insulative pelage may be a prerequisite for the energetic benefits derived from heterothermy in this species.  相似文献   

2.
Siberian hamsters undergo torpor during the short days of winter and in response to glucoprivation or food restriction. We tested whether the area postrema and the adjacent nucleus of the solitary tract (hereafter the AP), which monitor metabolic fuel availability, also control the onset of torpor. Siberian hamsters that had manifested torpor spontaneously or had entered torpor in response to 2-deoxy-D-glucose (2-DG) treatment were subjected to area postrema ablations (APx). Hamsters continued to display torpor postoperatively; most features of torpor were unaffected by APx. The AP is not necessary for expression of torpor elicited by short day lengths or metabolic challenge. In contrast, decreases in food intake manifested by hamsters treated with 2-DG were counteracted by APx. In Siberian hamsters, the AP appears to mediate effects of 2-DG on food intake but not torpor.  相似文献   

3.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

4.
Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.  相似文献   

5.
6.
The gray mouse lemur Microcebus murinus is a rare example of a primate exhibiting daily torpor. In captive animals, we examined the metabolic rate during arousal from torpor and showed that this process involved nonshivering thermogenesis (NST). Under thermoneutrality (28 degrees C), warming-up from daily torpor (body temperature <33 degrees C) involved a rapid (<5 min) increase of O(2) consumption that was proportional to the depth of torpor (n = 8). The injection of a beta-adrenergic agonist (isoproterenol) known to elicit NST induced a dose-dependent increase in metabolic rate (n = 8). Moreover, maximum thermogenesis was increased by cold exposure. For the first time in this species, anatomic and histological examination using an antibody against uncoupling protein (UCP) specifically demonstrated the presence of brown fat. With the use of Western blotting with the same antibody, we showed a likely increase in UCP expression after cold exposure, suggesting that NST is also used to survive low ambient temperatures in this tropical species.  相似文献   

7.
Summary In Djungarian hamsters,Phodopus sungorus, daily torpor occurs spontaneously in winter in the presence of abundant food, but individuals show different tendencies to enter torpor. The results show that in hamsters fed rodent chow ad libitum individual torpor frequencies were negatively correlated with both food consumption and the amount of nocturnal locomotor activity. Provision of cafeteria diet at ambient temperatures below thermoneutrality significantly lowered torpor frequencies and induced body weight gains. However, in hamsters fed seeds with a high fat or carbohydrate content (i.e., sunflower seeds or wheat, respectively) neither a decrease of torpor frequencies nor an increase of body weights was observed. The results suggest that in Djungarian hamsters, daily torpor is an intrinsic component of energy balance control and is functionally linked to individual physiological adjustments of food consumption and foraging activity. In addition, the employment of daily torpor can be affected by social interactions, since the long-term pattern of alternations between torpor and normothermia was found to be synchronized in breeding pairs caged together.Abbreviations T a ambient temperature - DIT diet-induced thermogenesis  相似文献   

8.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

9.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   

10.
Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets, dependent on intrinsic platelet functionality, governs clearance of circulating platelets during torpor.  相似文献   

11.
Daily changes of pineal melatonin content were determined in warm-adapted nonhibernating and cold-adapted hibernating golden hamsters (Mesocricetus auratus). Pineal melatonin in nonhibernating golden hamsters showed marked daily rhythm with the night values about 20 times higher than the daytime ones. In hamsters hibernating for 2 and 3 days the melatonin rhythm was abolished, since no increase of pineal melatonin over basal levels occurred throughout 24 hr period. After arousal from hibernation melatonin increased rapidly regardless whether the hamsters were provoked to arousal during day or night.  相似文献   

12.
Pineal melatonin rhythm in golden hamsters was abolished during hibernation. After arousal in darkness, pineal melatonin increased rapidly regardless of whether the arousal was induced during the day or at night. Rapid increase of pineal melatonin after arousal was markedly diminished in animals exposed to light. In hamsters aroused at midnight, the melatonin rhythm in constant darkness ran with the reversed phase relative to hamsters aroused at noon. Since after arousal the melatonin rhythm obviously starts anew from the same phase, we conclude that the circadian pacemaker driving the rhythm might be arrested during hibernation at the day-time phase.  相似文献   

13.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

14.
Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.  相似文献   

15.
We investigated the correlation between torpor frequency and capacity for non-shivering thermogenesis (NST) in Siberian hamsters (Phodopus sungorus) during 25 weeks of acclimation to cold and short days. We hypothesized that torpor use is conditioned on the development of brown adipose tissue (BAT) capacity for NST. We found that (1) the degree of noradrenaline (NA)-induced hyperthermia was positively correlated with torpor frequency and its length and depth, and (2) the maximum response to NA occurred at the time of day when hamsters naturally arouse from torpor. The present study quantifies the correlation between torpor frequency and NST capacity and we suggest that a well-developed NST capacity is a prerequisite for the occurrence of torpor.  相似文献   

16.
The 4-5-mo hibernation season of golden-mantled ground squirrels consists of extended torpor bouts interspersed with brief, periodic intervals of normothermic arousal. Plasma levels of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) and degree of scrotal pigmentation were measured in torpid and aroused male ground squirrels throughout a season of hibernation and in active animals after the termination of torpor. T was basal in torpid animals; beginning 3 weeks before torpor ended, T was elevated in normothermic males during the first half of periodic arousals but returned to basal levels before animals reentered torpor. After the last (terminal) arousal from torpor, T levels were moderately elevated for 4 wk and maximal for the next 6 wk before they returned to basal values. LH patterns were similar to those of T; however, levels of T and LH were positively correlated only in aroused or posthibernation males. FSH levels remained constant and low during most of the heterothermic season but increased in several torpid males within 3 days of terminal arousal. FSH levels peaked 2 wk after the end of heterothermy. Scrotal pigmentation developed over the first 4 wk after terminal arousal. Maturation of reproductive function occurs during the 4 wk after termination of heterothermy, but elevated levels of T during arousals and variable levels of FSH in the last days of torpor suggest that activation or increased sensitivity of the hypothalamic-pituitary-gonadal axis is important in the termination of heterothermy in ground squirrels.  相似文献   

17.
A photoperiod with a short photophase induces a winterlike phenotype in Siberian hamsters that includes a progressive decrease in food intake and body mass and reproductive organ regression, as well as reversible hypothermia in the form of short-duration torpor. Torpor substantially reduces energy utilization and is not initiated until body mass, fat stores, and serum leptin concentrations are at their nadir. Because photoperiod-dependent torpor is delayed until fat reserves are lowest, leptin concentrations may be a permissive factor for torpor onset. This conjecture was tested by implanting osmotic minipumps into Siberian hamsters manifesting spontaneous torpor; the animals received a constant release of leptin or vehicle for 14 days. Exogenous leptin treatment eliminated torpor in a significant proportion of treated hamsters, whereas treatment with the vehicle did not. Similarly, endogenous serum leptin concentrations were markedly reduced in all animals undergoing daily torpor. Although simply reducing leptin concentrations below a threshold value is not sufficient for torpor initiation, reduced leptin concentrations nevertheless appear necessary for its occurrence. It is proposed that drastically reduced leptin concentrations provide a "starvation signal" to an as yet unidentified central mechanism mediating torpor initiation.  相似文献   

18.
Djungarian or Siberian hamsters (Phodopus sungorus) acclimated to short photoperiod display episodes of spontaneous daily torpor with metabolic rate depressed by approximately 70% and body temperature (T(b)) reduced by approximately 20 degrees C. To study the cardiovascular adjustment to daily torpor in Phodopus, electrocardiogram (ECG) and T(b) were continuously recorded by telemetry during entrance into torpor, in deep torpor, and during arousal from torpor. Minimum T(b) during torpor bouts was approximately 21 degrees C, and heart rate, approximately 349 beats/min at euthermy, displayed marked sinus bradyarrhythmia at approximately 70 beats/min. Arousal was typically completed within approximately 40 min, followed by a sustained post-torpor inactivity tachycardia ( approximately 540 beats/min). The absence of episodes of conduction block, tachyarrhythmia, or other forms of ectopy throughout the torpor cycle demonstrates a remarkable resistance to arrhythmogenesis. The ECG morphology lacks a distinct isoelectric interval following the QRS complex, and the ST segment resembles the ECG pattern in mice, with a prominent fast transient outward K(+) current (I(to,f)) determining the early phase of ventricular repolarization. During low-temperature torpor, the amplitudes of the QRS complex substantially increased, suggesting that in the euthermic state the terminal portion of ventricular depolarization is fused with the beginning of repolarization, low T(b) acting to decorrelate the superposition between depolarization and repolarization by delaying the repolarization onset. Atrioventricular and ventricular conduction times were prolonged as function of T(b). In contrast, the QT vs. T(b) relationship showed marked hysteresis indicating the operation of nonlinear control mechanisms whereby the rapid QT shortening during arousal results from additional mechanisms (probably sympathetic stimulation) other than temperature alone.  相似文献   

19.
Siberian hamsters (Phodopus sungorus) have the ability to express daily torpor and decrease their body temperature to approximately 15 degrees C, providing a significant savings in energy expenditure. Daily torpor in hamsters is cued by winterlike photoperiods and occurs coincident with the annual nadirs in body fat reserves and chronic leptin concentrations. To better understand the neural mechanisms underlying torpor, Siberian hamster pups were postnatally treated with saline or MSG to ablate arcuate nucleus neurons that likely possess leptin receptors. Body temperature was studied telemetrically in cold-acclimated (10 degrees C) male and female hamsters moved to a winterlike photoperiod (10:14-h light-dark cycle) (experiments 1 and 2) or that remained in a summerlike photoperiod (14:10-h light-dark cycle) (experiment 3). In experiment 1, even though other photoperiodic responses persisted, MSG-induced arcuate nucleus ablations prevented the photoperiod-dependent torpor observed in saline-treated Siberian hamsters. MSG-treated hamsters tended to possess greater fat reserves. To determine whether reductions in body fat would increase frequency of photoperiod-induced torpor after MSG treatment, hamsters underwent 2 wk of food restriction (70% of ad libitum) in experiment 2. Although food restriction did increase the frequency of torpor in both MSG- and saline-treated hamsters, it failed to normalize the proportion of MSG-treated hamsters undergoing photoperiod-dependent torpor. In experiment 3, postnatal MSG treatments reduced the proportion of hamsters entering 2DG-induced torpor-like hypothermia by approximately 50% compared with saline-treated hamsters (38 vs. 72%). In those MSG-treated hamsters that did become hypothermic, their minimum temperature during hypothermia was significantly greater than comparable saline-treated hamsters. We conclude that 1) arcuate nucleus mechanisms mediate photoperiod-induced torpor, 2) food-restriction-induced torpor may also be reduced by MSG treatments, and 3) arcuate nucleus neurons make an important, albeit partial, contribution to 2DG-induced torpor-like hypothermia.  相似文献   

20.
The surface of the lower incisor teeth was studied in an adult male Mesocricetus raddei hamster with a temperature logger implanted into its peritoneal cavity in June 2010. From July 2010 to March 2011, the hamster lived under natural conditions in an enclosure and overwintered in a self-made burrow. Logger data showed that, beginning from mid-August, the animal body temperature periodically dropped and then returned to the norm, with the duration and depth of hypothermia (torpor bouts) increasing and those of nor-mothermia (arousals) decreasing with time. Growth increments on the incisor surface (presumably, daily increments) were unclear in the apical and middle tooth parts but very distinct in the basal part. The number and width of basal increments generally corresponded to the number and duration of arousals. The growth of the incisors apparently continued throughout the winter season, with every arousal after a torpor bout being marked by the formation of a distinct increment on the incisor surface. Thus, it appears that the pattern of increments on the incisor surface can be used to evaluate the course of wintering in hibernating hamsters. Experiments with vital markers are needed to confirm this assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号