首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titushkin I  Cho M 《Biophysical journal》2007,93(10):3693-3702
Recognition of the growing role of human mesenchymal stem cells (hMSC) in tissue engineering and regenerative medicine requires a thorough understanding of intracellular biochemical and biophysical processes that may direct the cell's commitment to a particular lineage. In this study, we characterized the distinct biomechanical properties of hMSCs, including the average Young's modulus determined by atomic force microscopy (3.2 +/- 1.4 kPa for hMSC vs. 1.7 +/- 1.0 kPa for fully differentiated osteoblasts), and the average membrane tether length measured with laser optical tweezers (10.6 +/- 1.1 microm for stem cells, and 4.0 +/- 1.1 microm for osteoblasts). These differences in cell elasticity and membrane mechanics result primarily from differential actin cytoskeleton organization in these two cell types, whereas microtubules did not appear to affect the cellular mechanics. The membrane-cytoskeleton linker proteins may contribute to a stronger interaction of the plasma membrane with F-actins and shorter membrane tether length in osteoblasts than in stem cells. Actin depolymerization or ATP depletion caused a two- to threefold increase in the membrane tether length in osteoblasts, but had essentially no effect on the stem-cell membrane tethers. Actin remodeling in the course of a 10-day osteogenic differentiation of hMSC mediates the temporally correlated dynamical changes in cell elasticity and membrane mechanics. For example, after a 10-day culture in osteogenic medium, hMSC mechanical characteristics were comparable to those of mature bone cells. Based on quantitative characterization of the actin cytoskeleton remodeling during osteodifferentiation, we postulate that the actin cytoskeleton plays a pivotal role in determining the hMSC mechanical properties and modulation of cellular mechanics at the early stage of stem-cell osteodifferentiation.  相似文献   

2.
We investigated the effects of the drug 14-keto-stypodiol diacetate (SDA) extracted from the seaweed product Stypopodium flabelliforme, in inhibiting the cell growth and tumor invasive behavior of DU-145 human prostate cells. In addition, the molecular action of the drug on microtubule assembly was analyzed. The effects of this diterpenoid drug in cell proliferation of DU-145 tumor cells in culture revealed that SDA at concentrations of 5 M decreased cell growth by 14%, while at 45 M a 61% decrease was found, as compared with control cells incubated with the solvent but in the absence of the drug. To study their effects on the cell cycle, DU-145 cells were incubated with increasing concentrations of SDA and the distribution of cell-cycle stages was analyzed by flow cytometry. Interestingly, the data showed that 14-keto-stypodiol diacetate dramatically increased the proportion of cells in the G2/M phases, and decreased the number of cells at the S phase of mitosis, as compared with appropriate controls. Studies on their action on the in vitro assembly of microtubules using purified brain tubulin, showed that SDA delayed the lag period associated to nucleation events during assembly, and decreased significantly the extent of polymerization. The studies suggest that this novel derivative from a marine natural product induces mitotic arrest of tumor cells, an effect that could be associated to alterations in the normal microtubule assembly process. On the other hand, a salient feature of this compound is that it affected protease secretion and the in vitro invasive capacity, both properties of cells from metastases. The secretion of plasminogen activator (u-PA) and the capacity of DU-145 cells to migrate through a Matrigel-coated membrane were significantly inhibited in the presence of micromolar concentrations of SDA. These results provide new keys to analyze the functional relationships between protease secretion, invasive behavior of tumor cells and the microtubule network.  相似文献   

3.
Cell shape and membrane remodeling rely on regulated interactions between the lipid bilayer and cytoskeletal arrays at the cell cortex. During cytokinesis, animal cells build an actomyosin ring anchored to the plasma membrane at the equatorial cortex. Ring constriction coupled to plasma-membrane ingression separates the two daughter cells. Plasma-membrane lipids influence membrane biophysical properties such as membrane curvature and elasticity and play an active role in cell function, and specialized membrane domains are emerging as important factors in regulating assembly and rearrangement of the cytoskeleton. Here, we show that mutations in the gene bond, which encodes a Drosophila member of the family of Elovl proteins that mediate elongation of very-long-chain fatty acids, block or dramatically slow cleavage-furrow ingression during early telophase in dividing spermatocytes. In bond mutant cells at late stages of division, the contractile ring frequently detaches from the cortex and constricts or collapses to one side of the cell, and the cleavage furrow regresses. Our findings implicate very-long-chain fatty acids or their derivative complex lipids in allowing supple membrane deformation and the stable connection of cortical contractile components to the plasma membrane during cell division.  相似文献   

4.

Background

Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis.

Methods

Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age.

Results

Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility.

Conclusions

The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.  相似文献   

5.
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal'' clusters in the interphase and mitosis of ~80% of patients'' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.Unlike in vitro cell cultures, cancer cells in patients'' tumor tissues have low mitotic indices and proliferation rates.1 Consequently, drugs targeting mitosis demonstrate limited clinical efficacy, which exposes a fundamental weakness in the rationale underlying their clinical development. By contrast, classical microtubule-targeting agents (MTAs), largely believed to act by perturbing mitosis, remain the mainstay of chemotherapy in the clinic. Given the miniscule population of mitotic cells in patient tumors,2, 3 it stands to reason that MTAs must target interphase.4 This paradigm shift has spurred an intense search for novel interphase targets that combine the ‘ideal'' attributes of cancer-cell selectivity and the ability to confer vulnerability on a large proportion of tumor cells.Centrosomes, the major microtubule-organizing centers (MTOCs) of cells, are required for accurate cell division, cell motility and cilia formation.5 The number of centrosomes within a cell is strictly controlled, and their duplication occurs only once per cell cycle. Nearly all types of cancer cells have abnormal numbers of centrosomes,6, 7, 8 which correlates with chromosomal instability during tumorigenesis.9, 10, 11 Supernumerary centrosomes in cancer cells can cause spindle multipolarity and thus non-viable progeny. Cancer cells avoid this outcome by clustering centrosomes to assemble a pseudo-bipolar mitotic spindle, which yields viable daughter cells.12 Thus disrupting centrosome clustering may selectively drive cancer cells with amplified centrosomes to mitotic catastrophe and apoptosis without affecting normal cells.The fate and interphase role of the supercentrosomal cluster inherited by each daughter cell at the end of a pseudobipolar mitosis is unknown. This is an important research question, because a majority of cells within tumors are in interphase and the centrosomes'' command over microtubule nucleation is crucial for the cellular organization and motility in interphase. If cancer cells cluster centrosomes in interphase, then disrupting the cluster could impact interphase-specific processes, opening up a vital therapeutic avenue. We envision that centrosome declustering would (a) derail interphase-specific polarization and migration processes and (b) precipitate multipolar mitosis culminating in apoptosis. This two-pronged strategy would impact a significantly larger proportion of tumor cells and consign them to death. Our study herein establishes that centrosome-declustering drugs (RedBr-Nos, Griseofulvin and PJ-34) achieve this two-pronged attack as a unique class of agents that exhibit multiple cellular activities.  相似文献   

6.

Background

Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.

Methodology/Principal Findings

We used dielectrophoresis (DEP) to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.

Conclusions/Significance

We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.  相似文献   

7.
Cholesterol has been shown to be essential for the fusion of alphaviruses with artificial membranes (liposomes). Cholesterol has also been implicated as playing an essential and critical role in the processes of entry and egress of alphaviruses in living cells. Paradoxically, insects, the alternate host for alphaviruses, are cholesterol auxotrophs and contain very low levels of this sterol. To further evaluate the role of cholesterol in the life cycle of alphaviruses, the cholesterol levels of the alphavirus Sindbis produced from three different mosquito (Aedes albopictus) cell lines; one other insect cell line, Sf21 from Spodoptera frugiperda; and BHK (mammalian) cells were measured. Sindbis virus was grown in insect cells under normal culture conditions and in cells depleted of cholesterol by growth in serum delipidated by using Cab-O-sil, medium treated with methyl-β-cyclodextrin, or serum-free medium. The levels of cholesterol incorporated into the membranes of the cells and into the virus produced from these cells were determined. Virus produced from these treated and untreated cells was compared to virus grown in BHK cells under standard conditions. The ability of insect cells to produce Sindbis virus after delipidation was found to be highly cell specific and not dependent on the level of cholesterol in the cell membrane. A very low level of cholesterol was required for the generation of wild-type levels of infectious Sindbis virus from delipidated cells. The data show that one role of the virus membrane is structural, providing the stability required for infectivity that may not be provided by the delipidated membranes in some cells. These data show that the amount of cholesterol in the host cell membrane in and of itself has no effect on the process of virus assembly or on the ability of virus to infect cells. Rather, these data suggest that the cholesterol dependence reported for infectivity and assembly of Sindbis virus is a reflection of differences in the insect cell lines used and the methods of delipidation.Sindbis virus, the prototypic Alphavirus, assembles highly symmetrical particles with an associated membrane of host cell origin. The infectious particle is composed of two nested icosahedral shells of T=4 geometry with an intervening membrane bilayer (41). The three structural proteins which comprise the particle, E1, E2, and capsid, are found in a 1:1:1 stoichiometric ratio. The outer shell, composed of glycoproteins E1 and E2, and the nucleocapsid are associated with the outer protein shell through specific interactions of the E2 endodomain with the capsid protein (28-30, 53). Both E1 and E2 are anchored into the membrane bilayer by transmembrane domains (44). During maturation of the virus, the glycoproteins E1 and E2 are processed and oligomerize into trimers of heterodimers and are delivered to the cell surface by the cellular exocytic pathway (6, 39). In mammalian cells, the glycoproteins are trafficked to the plasma membrane to unite with preformed nucleocapsids (5, 12). The maturational pathway used by this virus in insect cells is also via the exocytic pathway; however, in these cells, the virus particles assemble within cytoplasmic vesicles which release virus directly into the extracellular medium (4, 38). It has been assumed that while the assembly pathway of Sindbis virus differs in certain details during the infection process in these divergent hosts, the molecular details of assembly result in functionally equivalent virus structures (49). Indeed, Sindbis virus is a chimeric structure: the protein and the RNA are specified by the viral genome, while the nature of the lipid in the virus is determined largely by the host cell.Recent genetic analysis has further demonstrated the chimeric nature of the alphaviruses at the molecular level and has reemphasized the importance of the host-derived membrane as a structural component of the virus particle. Deletions in the protein domain that engages the membrane result in changes in the infectivity of the virus, while having a lesser effect on the process of assembly. The deletions also affect the ability of the virus to assemble in the insect and mammalian hosts (17, 18, 56). These data suggest that the composition of the host cell membrane plays a critical role in the assembly of the virus. The amount of cholesterol in the membrane has been suggested to be critical for both the assembly of virus and the ability of the virus to infect cells (25, 31, 34, 43). To further test this theory, an investigation into the effect of the amount of cholesterol incorporated into the viral membrane on virus infection of and virus production from an insect or mammalian host was warranted.Our model for how these truncated proteins retain the ability to assemble into infectious particles in insect membranes invokes membrane thickness as a primary factor in the stability of shortened membrane anchor domains in the lipid bilayer. This hypothesis was put forth because of the evidence that the high cholesterol content found in mammalian cells can increase membrane thickness and alter physical properties, such as ion permeability and viscosity (36). Cholesterol in the eukaryotic membrane enhances acyl chain packing of the phospholipids, increases mechanical strength, and reduces permeability (57). Insects cannot synthesize cholesterol de novo and depend on dietary cholesterol for their physiological requirements (27). As cholesterol auxotrophs, insect cells in culture can withstand a significant level of cholesterol depletion (47); however, in the presence of serum, they will incorporate cholesterol (37). In the present study, we have used wild-type Sindbis virus specifically to investigate the ability of this virus to incorporate cholesterol into the viral membrane when grown under standard conditions and under conditions of lipid depletion. To address this question, Sindbis virus was grown in BHK or mosquito U4.4, C7-10, or C6/36 cells under conditions of high levels of free lipid and various conditions of lipid depletion and in an additional insect cell line, Sf21, grown under serum-free conditions.  相似文献   

8.
This last portion of our developmental study ofPinus sylvestris L. pollen grains extends from just prior to the first microspore mitosis to the microsporangial dehiscence preparatory to pollen shedding. In nine years of collecting each day the duration of the above period was 7 to 11 days. Tapetal cells extended into the loculus and embraced microspores during the initial part of the above period. Thereafter tapetal cells receded, became parallel to parietal cells and so imbricated that there appeared to be two or three layers of tapetal cells. Tapetal cells were present up to the day before pollen shedding, but only rER and some mitochondria appeared to be in good condition at that time. A callosic layer (outer intine) was initiated under the endexine before microspore mitosis. After the first mitosis the first prothallial cell migrated to the proximal wall and was covered on the side next to the pollen cytoplasm by a thin wall joining the thick outer intine. There are plasmodesmata between pollen cytoplasm and the prothallial cell. After the second mitosis the second prothallial cell became enveloped by the outer intine. The inner intine appears after formation of the two prothallial cells but before the third mitosis. During this two-prothallial cell period before the third mitosis, plastids had large and complex fibrillar assemblies shown to be modified starch grains. After the third mitosis plastids of the pollen cytoplasm contained starch and the generative cell (antheridial initial), the product of that mitosis, is enveloped by the inner intine. On the day of pollen shedding cells are removed from the microsporangial wall by what appears to be focal autolysis. The tapetal and endothecial cells for 10–15 µm on each side of the dehiscence slit are completely removed. One or more epidermal cells are lysed, but both a thin cuticle and the very thin sporopollenin-containing peritapetal membrane remain attached to the undamaged epidermal cells bordering the dehiscence slit. Our study terminates on the day of pollen shedding with mature pollen still within the open microsporangium. At that time there is no longer a clear morphological distinction between the outer and inner intine but, judging by stain reactions, there is a chemical difference. The exine of shed pollen grains was found to be covered by small spinules on the inner surface of alveoli. These had the same spacing as the Sporopollenin Acceptor Particles (SAPs) associated with exine initiation and growth.  相似文献   

9.
PURPOSE OF REVIEW: Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS: According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY: Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.  相似文献   

10.
11.
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.It is now well established that membranes along the endocytic and secretory pathway show differences not only in protein but also in lipid composition. For example, lipid gradients exist along the biosynthetic pathway with increasing density of cholesterol and sphingolipids from the endoplasmic reticulum (ER) to the plasma membrane (Maxfield and van Meer 2010). Also, phosphoinositides show distributions restricted to relatively well-characterized membrane territories (Di Paolo and De Camilli 2006). Given the facts that lipids are small and contain little structural information when compared with proteins, that they can diffuse rapidly within membranes, and that membranes are connected by membrane flow during transport, it is not always obvious how different lipids are segregated from each other.In this article, we will evoke different mechanisms that may contribute to the heterogeneous lipid composition of endocytic membranes, including physicochemical properties of the membrane, interactions with other proteins or lipids, and synthesis or degradation. In addition, it has also become apparent that peripheral membrane proteins often interact with membranes via diverse lipid-binding motifs, and thus that lipids directly contribute to the distribution of many peripheral membrane proteins. For example, phosphatidylinositol 3-phosphate (PI(3)P) is detected predominantly on early endosomes, where most characterized PI(3)P-binding proteins encoded by the human genome are found as well (Raiborg et al. 2013). We will also discuss how some lipids may regulate protein sorting and membrane transport within the endosomal system.  相似文献   

12.
Summary Shortly before and during division, the generative cell of barley (Hordeum vulgare L.) is located near the vegetative nucleus, in the peripheral layer of the highly vacuolated vegetative cell at the aperture pole. This position is also characteristic of the two resulting sperm cells. Conventional mitosis of the generative cell is followed by cytokinesis through cell plate formation. Just after division, the two sperm cells are enclosed together within a common inner vegetative cell plasma membrane, and they gradually separate from each other only during pollen maturation. The space between the generative or sperm cell plasma membrane and the vegetative cell plasma membrane is very thin and appears to be devoid of a cell wall. Both the generative cell and the young sperm cells contain a normal set of organelles; plastids devoid of starch are only sporadically observed. Our data indicate that in Hordeum vulgare the generative cell divides after migrating inside the pollen grain. This follows the pattern of development well established for several species with tricellular pollen.  相似文献   

13.
Polyunsaturated fatty acids (PUFA) constitute an influential group of molecules that promote health by an as yet unknown mechanism. They are structurally distinguished from less unsaturated fatty acids by the presence of a repeating CH-CH2-CH unit that produces an extremely flexible chain rapidly reorienting through conformational states. The most highly unsaturated case in point is docosahexaenoic acid (DHA) with 6 double bonds. This review will summarize how the high disorder of DHA affects the properties of the membrane phospholipids into which the PUFA incorporates, focusing upon the profound impact on the interaction with cholesterol. Results obtained with model membranes using an array of biophysical techniques will be presented. They demonstrate DHA and the sterol possesses a mutual aversion that drives the lateral segregation of DHA-containing phospholipids into highly disordered domains away from cholesterol. These domains are compositionally and organizationally the opposite of lipid rafts, the ordered domain enriched in predominantly saturated sphingolipids “glued” together by cholesterol that is believed to serve as the platform for signaling proteins. We hypothesize that DHA-rich domains also form in the plasma membrane and are responsible, in part, for the diverse range of health benefits associated with DHA.  相似文献   

14.
15.
The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.  相似文献   

16.

Background

Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle.

Results

Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2?/? HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis.

Conclusion

Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
  相似文献   

17.
Tumor cells require high levels of cholesterol for membrane biogenesis for rapid proliferation during development. Beyond the acquired cholesterol from low-density lipoprotein (LDL) taken up from circulation, tumor cells can also biosynthesize cholesterol. The molecular mechanism underlying cholesterol anabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are unclear. Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we identified that LPCAT1 is highly expressed in ESCC and that LPCAT1 reprograms cholesterol metabolism in ESCC. LPCAT1 expression was negatively correlated with patient prognosis. Cholesterol synthesis in ESCC cells was significantly inhibited following LPCAT1 knockdown; cell proliferation, invasion, and migration were significantly reduced, along with the growth of xenograft subcutaneous tumors. LPCAT1 could regulate the expression of the cholesterol synthesis enzyme, SQLE, by promoting the activation of PI3K, thereby regulating the entry of SP1/SREBPF2 into the nucleus. LPCAT1 also activates EGFR leading to the downregulation of INSIG-1 expression, facilitating the entry of SREBP-1 into the nucleus to promote cholesterol synthesis. Taken together, LPCAT1 reprograms tumor cell cholesterol metabolism in ESCC and can be used as a potential treatment target against ESCC.Subject terms: Cancer metabolism, Cancer prevention  相似文献   

18.
During cryopreservation, the cell plasma membrane faces severe perils, including lipid phase separation, solute effects, and osmotic stresses associated with ice crystallization. How the initial biophysical properties of the plasma membrane can be modulated before cryopreservation in order to influence cellular resistance to the freeze-thaw stress is addressed in this study. Rainbow trout (Oncorhynchus mykiss) spermatozoa were chosen because the lack of an acrosome in this species suppresses potential interactions of cryopreservation with capacitation. Methyl-beta cyclodextrin-induced modulation of membrane cholesterol revealed the presence of a significant cholesterol exchangeable pool in the trout sperm plasma membrane, as membrane cholesterol content could be halved or doubled with respect to the basic composition of the cell without impairing fresh sperm motility and fertilizing ability. Biophysical properties of the sperm plasma membrane were affected by cholesterol changes: membrane resistance to a hypo-osmotic stress increased linearly with membrane cholesterol whereas membrane fluidity, assessed with DPH (1,6-diphenyl-1,3,5-hexatriene) and with several spin-labeled analogues of membrane lipids, decreased. Phosphatidyl serine translocation between the bilayers was slowed at high cholesterol content. The increased cohesion of fresh trout sperm plasma membrane as cholesterol increased did not improve the fertilizing ability of frozen-thawed sperm whereas the lowest cholesterol contents impaired this parameter of sperm quality. Our study demonstrated that cholesterol induced a stabilization of the plasma membrane in rainbow trout spermatozoa, but this stabilization before cryopreservation brought no improvement to the poor freezability of this cell.  相似文献   

19.
Parameterized models of biophysical and mechanical cell properties are important for predictive mathematical modeling of cellular processes. The concepts of turgor, cell wall elasticity, osmotically active volume, and intracellular osmolarity have been investigated for decades, but a consistent rigorous parameterization of these concepts is lacking. Here, we subjected several data sets of minimum volume measurements in yeast obtained after hyper-osmotic shock to a thermodynamic modeling framework. We estimated parameters for several relevant biophysical cell properties and tested alternative hypotheses about these concepts using a model discrimination approach. In accordance with previous reports, we estimated an average initial turgor of 0.6 ± 0.2 MPa and found that turgor becomes negligible at a relative volume of 93.3 ± 6.3% corresponding to an osmotic shock of 0.4 ± 0.2 Osm/l. At high stress levels (4 Osm/l), plasmolysis may occur. We found that the volumetric elastic modulus, a measure of cell wall elasticity, is 14.3 ± 10.4 MPa. Our model discrimination analysis suggests that other thermodynamic quantities affecting the intracellular water potential, for example the matrix potential, can be neglected under physiological conditions. The parameterized turgor models showed that activation of the osmosensing high osmolarity glycerol (HOG) signaling pathway correlates with turgor loss in a 1:1 relationship. This finding suggests that mechanical properties of the membrane trigger HOG pathway activation, which can be represented and quantitatively modeled by turgor.  相似文献   

20.
Summary The processes of proliferation, cell division and differentiation of intestinal epithelial cells have been studied during development of the fish, Barbus conchonius. On the 3rd day, nearly all cells of the presumptive gut proliferate. Once the intestinal epithelium begins to differentiate, a decreasing percentage of proliferative cells can be found. On the 7th day, when intestinal folds start to develop, the proliferative cells become restricted to the future basal parts of the folds.Ultrastructural examination of 3H-thymidine-labeled cells and mitotic cells of 6-day-old larvae shows that functional enterocytes are proliferative. The same feature is suggested for older fish. Proliferating undifferentiated dark cells, characterized by many free ribosomes and a few organelles, are also present in the intestinal epithelium of larval fish; they are considered to be stem cells, mainly for goblet cells. Proliferating goblet cells and enteroendocrine cells were not observed. The latter cell type is scarce and has a long turnover time.A common feature of all these dividing cells is the presence of isolated spherical to cylindrical lamellar structures which may have lost contact with the cell membrane during prophase; they probably regain this contact by fusion with the cell membrane at the end of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号